Spaces:
Runtime error
Runtime error
File size: 15,011 Bytes
564df58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
import json
from argparse import ArgumentParser
import constants
from backend.controlnet import controlnet_settings_from_dict
from backend.models.gen_images import ImageFormat
from backend.models.lcmdiffusion_setting import DiffusionTask
from backend.upscale.tiled_upscale import generate_upscaled_image
from constants import APP_VERSION, DEVICE
from frontend.webui.image_variations_ui import generate_image_variations
from models.interface_types import InterfaceType
from paths import FastStableDiffusionPaths
from PIL import Image
from state import get_context, get_settings
from utils import show_system_info
from backend.device import get_device_name
parser = ArgumentParser(description=f"FAST SD CPU {constants.APP_VERSION}")
parser.add_argument(
"-s",
"--share",
action="store_true",
help="Create sharable link(Web UI)",
required=False,
)
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument(
"-g",
"--gui",
action="store_true",
help="Start desktop GUI",
)
group.add_argument(
"-w",
"--webui",
action="store_true",
help="Start Web UI",
)
group.add_argument(
"-r",
"--realtime",
action="store_true",
help="Start realtime inference UI(experimental)",
)
group.add_argument(
"-v",
"--version",
action="store_true",
help="Version",
)
parser.add_argument(
"-b",
"--benchmark",
action="store_true",
help="Run inference benchmark on the selected device",
)
parser.add_argument(
"--lcm_model_id",
type=str,
help="Model ID or path,Default stabilityai/sd-turbo",
default="stabilityai/sd-turbo",
)
parser.add_argument(
"--openvino_lcm_model_id",
type=str,
help="OpenVINO Model ID or path,Default rupeshs/sd-turbo-openvino",
default="rupeshs/sd-turbo-openvino",
)
parser.add_argument(
"--prompt",
type=str,
help="Describe the image you want to generate",
default="",
)
parser.add_argument(
"--negative_prompt",
type=str,
help="Describe what you want to exclude from the generation",
default="",
)
parser.add_argument(
"--image_height",
type=int,
help="Height of the image",
default=512,
)
parser.add_argument(
"--image_width",
type=int,
help="Width of the image",
default=512,
)
parser.add_argument(
"--inference_steps",
type=int,
help="Number of steps,default : 1",
default=1,
)
parser.add_argument(
"--guidance_scale",
type=float,
help="Guidance scale,default : 1.0",
default=1.0,
)
parser.add_argument(
"--number_of_images",
type=int,
help="Number of images to generate ,default : 1",
default=1,
)
parser.add_argument(
"--seed",
type=int,
help="Seed,default : -1 (disabled) ",
default=-1,
)
parser.add_argument(
"--use_openvino",
action="store_true",
help="Use OpenVINO model",
)
parser.add_argument(
"--use_offline_model",
action="store_true",
help="Use offline model",
)
parser.add_argument(
"--use_safety_checker",
action="store_true",
help="Use safety checker",
)
parser.add_argument(
"--use_lcm_lora",
action="store_true",
help="Use LCM-LoRA",
)
parser.add_argument(
"--base_model_id",
type=str,
help="LCM LoRA base model ID,Default Lykon/dreamshaper-8",
default="Lykon/dreamshaper-8",
)
parser.add_argument(
"--lcm_lora_id",
type=str,
help="LCM LoRA model ID,Default latent-consistency/lcm-lora-sdv1-5",
default="latent-consistency/lcm-lora-sdv1-5",
)
parser.add_argument(
"-i",
"--interactive",
action="store_true",
help="Interactive CLI mode",
)
parser.add_argument(
"-t",
"--use_tiny_auto_encoder",
action="store_true",
help="Use tiny auto encoder for SD (TAESD)",
)
parser.add_argument(
"-f",
"--file",
type=str,
help="Input image for img2img mode",
default="",
)
parser.add_argument(
"--img2img",
action="store_true",
help="img2img mode; requires input file via -f argument",
)
parser.add_argument(
"--batch_count",
type=int,
help="Number of sequential generations",
default=1,
)
parser.add_argument(
"--strength",
type=float,
help="Denoising strength for img2img and Image variations",
default=0.3,
)
parser.add_argument(
"--sdupscale",
action="store_true",
help="Tiled SD upscale,works only for the resolution 512x512,(2x upscale)",
)
parser.add_argument(
"--upscale",
action="store_true",
help="EDSR SD upscale ",
)
parser.add_argument(
"--custom_settings",
type=str,
help="JSON file containing custom generation settings",
default=None,
)
parser.add_argument(
"--usejpeg",
action="store_true",
help="Images will be saved as JPEG format",
)
parser.add_argument(
"--noimagesave",
action="store_true",
help="Disable image saving",
)
parser.add_argument(
"--lora",
type=str,
help="LoRA model full path e.g D:\lora_models\CuteCartoon15V-LiberteRedmodModel-Cartoon-CuteCartoonAF.safetensors",
default=None,
)
parser.add_argument(
"--lora_weight",
type=float,
help="LoRA adapter weight [0 to 1.0]",
default=0.5,
)
args = parser.parse_args()
if args.version:
print(APP_VERSION)
exit()
# parser.print_help()
show_system_info()
print(f"Using device : {constants.DEVICE}")
if args.webui:
app_settings = get_settings()
else:
app_settings = get_settings()
print(f"Found {len(app_settings.lcm_models)} LCM models in config/lcm-models.txt")
print(
f"Found {len(app_settings.stable_diffsuion_models)} stable diffusion models in config/stable-diffusion-models.txt"
)
print(
f"Found {len(app_settings.lcm_lora_models)} LCM-LoRA models in config/lcm-lora-models.txt"
)
print(
f"Found {len(app_settings.openvino_lcm_models)} OpenVINO LCM models in config/openvino-lcm-models.txt"
)
if args.noimagesave:
app_settings.settings.generated_images.save_image = False
else:
app_settings.settings.generated_images.save_image = True
if not args.realtime:
# To minimize realtime mode dependencies
from backend.upscale.upscaler import upscale_image
from frontend.cli_interactive import interactive_mode
if args.gui:
from frontend.gui.ui import start_gui
print("Starting desktop GUI mode(Qt)")
start_gui(
[],
app_settings,
)
elif args.webui:
from frontend.webui.ui import start_webui
print("Starting web UI mode")
start_webui(
args.share,
)
elif args.realtime:
from frontend.webui.realtime_ui import start_realtime_text_to_image
print("Starting realtime text to image(EXPERIMENTAL)")
start_realtime_text_to_image(args.share)
else:
context = get_context(InterfaceType.CLI)
config = app_settings.settings
if args.use_openvino:
config.lcm_diffusion_setting.openvino_lcm_model_id = args.openvino_lcm_model_id
else:
config.lcm_diffusion_setting.lcm_model_id = args.lcm_model_id
config.lcm_diffusion_setting.prompt = args.prompt
config.lcm_diffusion_setting.negative_prompt = args.negative_prompt
config.lcm_diffusion_setting.image_height = args.image_height
config.lcm_diffusion_setting.image_width = args.image_width
config.lcm_diffusion_setting.guidance_scale = args.guidance_scale
config.lcm_diffusion_setting.number_of_images = args.number_of_images
config.lcm_diffusion_setting.inference_steps = args.inference_steps
config.lcm_diffusion_setting.strength = args.strength
config.lcm_diffusion_setting.seed = args.seed
config.lcm_diffusion_setting.use_openvino = args.use_openvino
config.lcm_diffusion_setting.use_tiny_auto_encoder = args.use_tiny_auto_encoder
config.lcm_diffusion_setting.use_lcm_lora = args.use_lcm_lora
config.lcm_diffusion_setting.lcm_lora.base_model_id = args.base_model_id
config.lcm_diffusion_setting.lcm_lora.lcm_lora_id = args.lcm_lora_id
config.lcm_diffusion_setting.diffusion_task = DiffusionTask.text_to_image.value
config.lcm_diffusion_setting.lora.enabled = False
config.lcm_diffusion_setting.lora.path = args.lora
config.lcm_diffusion_setting.lora.weight = args.lora_weight
config.lcm_diffusion_setting.lora.fuse = True
if config.lcm_diffusion_setting.lora.path:
config.lcm_diffusion_setting.lora.enabled = True
if args.usejpeg:
config.generated_images.format = ImageFormat.JPEG.value.upper()
if args.seed > -1:
config.lcm_diffusion_setting.use_seed = True
else:
config.lcm_diffusion_setting.use_seed = False
config.lcm_diffusion_setting.use_offline_model = args.use_offline_model
config.lcm_diffusion_setting.use_safety_checker = args.use_safety_checker
# Read custom settings from JSON file
custom_settings = {}
if args.custom_settings:
with open(args.custom_settings) as f:
custom_settings = json.load(f)
# Basic ControlNet settings; if ControlNet is enabled, an image is
# required even in txt2img mode
config.lcm_diffusion_setting.controlnet = None
controlnet_settings_from_dict(
config.lcm_diffusion_setting,
custom_settings,
)
# Interactive mode
if args.interactive:
# wrapper(interactive_mode, config, context)
config.lcm_diffusion_setting.lora.fuse = False
interactive_mode(config, context)
# Start of non-interactive CLI image generation
if args.img2img and args.file != "":
config.lcm_diffusion_setting.init_image = Image.open(args.file)
config.lcm_diffusion_setting.diffusion_task = DiffusionTask.image_to_image.value
elif args.img2img and args.file == "":
print("Error : You need to specify a file in img2img mode")
exit()
elif args.upscale and args.file == "" and args.custom_settings == None:
print("Error : You need to specify a file in SD upscale mode")
exit()
elif (
args.prompt == ""
and args.file == ""
and args.custom_settings == None
and not args.benchmark
):
print("Error : You need to provide a prompt")
exit()
if args.upscale:
# image = Image.open(args.file)
output_path = FastStableDiffusionPaths.get_upscale_filepath(
args.file,
2,
config.generated_images.format,
)
result = upscale_image(
context,
args.file,
output_path,
2,
)
# Perform Tiled SD upscale (EXPERIMENTAL)
elif args.sdupscale:
if args.use_openvino:
config.lcm_diffusion_setting.strength = 0.3
upscale_settings = None
if custom_settings != {}:
upscale_settings = custom_settings
filepath = args.file
output_format = config.generated_images.format
if upscale_settings:
filepath = upscale_settings["source_file"]
output_format = upscale_settings["output_format"].upper()
output_path = FastStableDiffusionPaths.get_upscale_filepath(
filepath,
2,
output_format,
)
generate_upscaled_image(
config,
filepath,
config.lcm_diffusion_setting.strength,
upscale_settings=upscale_settings,
context=context,
tile_overlap=32 if config.lcm_diffusion_setting.use_openvino else 16,
output_path=output_path,
image_format=output_format,
)
exit()
# If img2img argument is set and prompt is empty, use image variations mode
elif args.img2img and args.prompt == "":
for i in range(0, args.batch_count):
generate_image_variations(
config.lcm_diffusion_setting.init_image, args.strength
)
else:
if args.benchmark:
print("Initializing benchmark...")
bench_lcm_setting = config.lcm_diffusion_setting
bench_lcm_setting.prompt = "a cat"
bench_lcm_setting.use_tiny_auto_encoder = False
context.generate_text_to_image(
settings=config,
device=DEVICE,
)
latencies = []
print("Starting benchmark please wait...")
for _ in range(3):
context.generate_text_to_image(
settings=config,
device=DEVICE,
)
latencies.append(context.latency)
avg_latency = sum(latencies) / 3
bench_lcm_setting.use_tiny_auto_encoder = True
context.generate_text_to_image(
settings=config,
device=DEVICE,
)
latencies = []
for _ in range(3):
context.generate_text_to_image(
settings=config,
device=DEVICE,
)
latencies.append(context.latency)
avg_latency_taesd = sum(latencies) / 3
benchmark_name = ""
if config.lcm_diffusion_setting.use_openvino:
benchmark_name = "OpenVINO"
else:
benchmark_name = "PyTorch"
bench_model_id = ""
if bench_lcm_setting.use_openvino:
bench_model_id = bench_lcm_setting.openvino_lcm_model_id
elif bench_lcm_setting.use_lcm_lora:
bench_model_id = bench_lcm_setting.lcm_lora.base_model_id
else:
bench_model_id = bench_lcm_setting.lcm_model_id
benchmark_result = [
["Device", f"{DEVICE.upper()},{get_device_name()}"],
["Stable Diffusion Model", bench_model_id],
[
"Image Size ",
f"{bench_lcm_setting.image_width}x{bench_lcm_setting.image_height}",
],
[
"Inference Steps",
f"{bench_lcm_setting.inference_steps}",
],
[
"Benchmark Passes",
3,
],
[
"Average Latency",
f"{round(avg_latency,3)} sec",
],
[
"Average Latency(TAESD* enabled)",
f"{round(avg_latency_taesd,3)} sec",
],
]
print()
print(
f" FastSD Benchmark - {benchmark_name:8} "
)
print(f"-" * 80)
for benchmark in benchmark_result:
print(f"{benchmark[0]:35} - {benchmark[1]}")
print(f"-" * 80)
print("*TAESD - Tiny AutoEncoder for Stable Diffusion")
else:
for i in range(0, args.batch_count):
context.generate_text_to_image(
settings=config,
device=DEVICE,
)
|