File size: 2,664 Bytes
aeb9733
 
 
 
 
151915d
 
aeb9733
151915d
 
 
aeb9733
151915d
aeb9733
 
 
 
 
 
 
 
 
 
 
 
151915d
 
aeb9733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151915d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt

import PIL
from PIL import Image

import torch
import torchvision
from torchvision import datasets, transforms

import vision_transformer as vits

arch = "vit_small"
mode = "simpool"
gamma = None
patch_size = 16
input_size = 224
num_classes = 0
checkpoint = "checkpoints/vits_dino_simpool_no_gamma_ep100.pth"
checkpoint_key = "teacher"

cm = plt.get_cmap('viridis')
attn_map_size = 224
width_display = 290
height_display = 290

example_dir = "examples/"
example_list = [[example_dir + example] for example in os.listdir(example_dir)]
#example_list = "n03017168_54500.JPEG"

# Load model
model = vits.__dict__[arch](
            mode=mode,
            gamma=gamma,
            patch_size=patch_size,
            num_classes=num_classes, 
        )
state_dict = torch.load(checkpoint)
state_dict = state_dict[checkpoint_key]
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
state_dict = {k: v for k, v in state_dict.items() if k in model.state_dict()}
msg = model.load_state_dict(state_dict, strict=True)

model.eval()

# Define transformations
data_transforms = transforms.Compose([
    transforms.Resize((input_size, input_size), interpolation=3),
    transforms.ToTensor(),
    transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])

def get_attention_map(img):
    x = data_transforms(img)
    attn = model.get_simpool_attention(x[None, :, :, :])
    attn = attn.reshape(1, 1, input_size//patch_size, input_size//patch_size)
    attn = attn/attn.sum()
    attn = attn.squeeze()
    attn = (attn-(attn).min())/((attn).max()-(attn).min())
    attn = torch.threshold(attn, 0.1, 0)

    attn_img = Image.fromarray(np.uint8(cm(attn.detach().numpy())*255)).convert('RGB')
    attn_img = attn_img.resize((attn_map_size, attn_map_size), resample=Image.NEAREST)
    return attn_img

attention_interface = gr.Interface(
    fn=get_attention_map,
    inputs=[gr.Image(type="pil", label="Input Image")],
    outputs=gr.Image(type="pil", label="SimPool Attention Map", width=width_display, height=height_display),
    examples=example_list,
    title="Explore the Attention Maps of SimPool🔍",
    description="Upload or use one of the selected images to explore the intricate focus areas of a ViT-S model with SimPool, trained on ImageNet-1k, under supervision."
)

demo = gr.TabbedInterface([attention_interface],
                          ["Visualize Attention Maps"], title="SimPool Attention Map Visualizer 🌌")

if __name__ == "__main__":
    demo.launch(share=True)