Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
import
|
4 |
-
from docx import Document
|
5 |
from recommender import rank_resumes, summarize_resume_flan, extract_applicant_name
|
|
|
|
|
6 |
|
7 |
UPLOAD_FOLDER = "uploads"
|
8 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
9 |
|
|
|
10 |
def process_resumes(job_description, uploaded_files):
|
11 |
if not job_description.strip():
|
12 |
return "Please provide a job description.", None
|
@@ -14,60 +16,44 @@ def process_resumes(job_description, uploaded_files):
|
|
14 |
resume_texts = []
|
15 |
|
16 |
for uploaded_file in uploaded_files:
|
17 |
-
|
18 |
-
|
19 |
-
return "One of the uploaded files is missing a filename. Please upload files, not text.", None
|
20 |
-
|
21 |
ext = filename.lower().split(".")[-1]
|
22 |
|
|
|
23 |
file_path = os.path.join(UPLOAD_FOLDER, filename)
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
# Verify file saved correctly
|
35 |
-
if not os.path.exists(file_path):
|
36 |
-
return f"File was not saved correctly: {filename}", None
|
37 |
-
size = os.path.getsize(file_path)
|
38 |
-
print(f"Saved file {filename} size={size} bytes at {file_path}")
|
39 |
-
if size == 0:
|
40 |
-
return f"File {filename} saved but is empty!", None
|
41 |
-
|
42 |
-
# Extract text depending on file type
|
43 |
-
try:
|
44 |
-
if ext == "txt":
|
45 |
-
with open(file_path, "r", encoding="utf-8") as f:
|
46 |
-
text = f.read()
|
47 |
-
|
48 |
-
elif ext == "pdf":
|
49 |
with pdfplumber.open(file_path) as pdf:
|
50 |
pages = [page.extract_text() for page in pdf.pages if page.extract_text() is not None]
|
51 |
if not pages:
|
52 |
return f"No extractable text found in PDF: {filename}. Is it scanned or image-only?", None
|
53 |
text = "\n".join(pages)
|
|
|
|
|
54 |
|
55 |
-
|
|
|
56 |
doc = Document(file_path)
|
57 |
text = "\n".join([p.text for p in doc.paragraphs])
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
except Exception as e:
|
63 |
-
return f"Failed to process {ext.upper()} {filename}: {str(e)}", None
|
64 |
|
65 |
resume_texts.append((filename, text))
|
66 |
|
67 |
-
# Rank resumes
|
68 |
results = rank_resumes(job_description, resume_texts)
|
69 |
|
70 |
-
# Generate summaries
|
71 |
for candidate in results:
|
72 |
candidate["summary"] = summarize_resume_flan(candidate["text"], job_description)
|
73 |
|
@@ -82,6 +68,7 @@ def process_resumes(job_description, uploaded_files):
|
|
82 |
|
83 |
return "", table_data
|
84 |
|
|
|
85 |
with gr.Blocks() as demo:
|
86 |
gr.Markdown("## Candidate Recommendation Engine")
|
87 |
with gr.Row():
|
@@ -96,5 +83,6 @@ with gr.Blocks() as demo:
|
|
96 |
|
97 |
btn.click(process_resumes, inputs=[job_desc, resumes], outputs=[msg, output_table])
|
98 |
|
|
|
99 |
if __name__ == "__main__":
|
100 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
import shutil
|
|
|
4 |
from recommender import rank_resumes, summarize_resume_flan, extract_applicant_name
|
5 |
+
from docx import Document
|
6 |
+
import pdfplumber
|
7 |
|
8 |
UPLOAD_FOLDER = "uploads"
|
9 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
10 |
|
11 |
+
|
12 |
def process_resumes(job_description, uploaded_files):
|
13 |
if not job_description.strip():
|
14 |
return "Please provide a job description.", None
|
|
|
16 |
resume_texts = []
|
17 |
|
18 |
for uploaded_file in uploaded_files:
|
19 |
+
# uploaded_file is a file path string from gr.Files
|
20 |
+
filename = os.path.basename(uploaded_file)
|
|
|
|
|
21 |
ext = filename.lower().split(".")[-1]
|
22 |
|
23 |
+
# Copy the file from Gradio temp folder to your uploads folder
|
24 |
file_path = os.path.join(UPLOAD_FOLDER, filename)
|
25 |
+
shutil.copy(uploaded_file, file_path)
|
26 |
+
|
27 |
+
# Read content based on extension
|
28 |
+
if ext == "txt":
|
29 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
30 |
+
text = f.read()
|
31 |
+
|
32 |
+
elif ext == "pdf":
|
33 |
+
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
with pdfplumber.open(file_path) as pdf:
|
35 |
pages = [page.extract_text() for page in pdf.pages if page.extract_text() is not None]
|
36 |
if not pages:
|
37 |
return f"No extractable text found in PDF: {filename}. Is it scanned or image-only?", None
|
38 |
text = "\n".join(pages)
|
39 |
+
except Exception as e:
|
40 |
+
return f"Failed to process PDF {filename}: {str(e)}", None
|
41 |
|
42 |
+
elif ext == "docx":
|
43 |
+
try:
|
44 |
doc = Document(file_path)
|
45 |
text = "\n".join([p.text for p in doc.paragraphs])
|
46 |
+
except Exception as e:
|
47 |
+
return f"Failed to process DOCX {filename}: {str(e)}", None
|
48 |
|
49 |
+
else:
|
50 |
+
return f"Unsupported file format: {filename}", None
|
|
|
|
|
|
|
51 |
|
52 |
resume_texts.append((filename, text))
|
53 |
|
54 |
+
# Rank resumes and generate summaries
|
55 |
results = rank_resumes(job_description, resume_texts)
|
56 |
|
|
|
57 |
for candidate in results:
|
58 |
candidate["summary"] = summarize_resume_flan(candidate["text"], job_description)
|
59 |
|
|
|
68 |
|
69 |
return "", table_data
|
70 |
|
71 |
+
|
72 |
with gr.Blocks() as demo:
|
73 |
gr.Markdown("## Candidate Recommendation Engine")
|
74 |
with gr.Row():
|
|
|
83 |
|
84 |
btn.click(process_resumes, inputs=[job_desc, resumes], outputs=[msg, output_table])
|
85 |
|
86 |
+
|
87 |
if __name__ == "__main__":
|
88 |
demo.launch()
|