bin20 commited on
Commit
31f14a0
1 Parent(s): 6477e73

Delete app (2).py

Browse files
Files changed (1) hide show
  1. app (2).py +0 -242
app (2).py DELETED
@@ -1,242 +0,0 @@
1
- import gradio as gr
2
-
3
- from matplotlib import gridspec
4
- import matplotlib.pyplot as plt
5
- import numpy as np
6
- from PIL import Image
7
- import tensorflow as tf
8
- from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
-
10
- feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
- "nvidia/segformer-b5-finetuned-ade-640-640"
12
- )
13
- model = TFSegformerForSemanticSegmentation.from_pretrained(
14
- "nvidia/segformer-b5-finetuned-ade-640-640"
15
- )
16
-
17
- def ade_palette():
18
- """ADE20K palette that maps each class to RGB values."""
19
- return [
20
- [204, 87, 92],
21
- [112, 185, 212],
22
- [45, 189, 106],
23
- [234, 123, 67],
24
- [78, 56, 123],
25
- [210, 32, 89],
26
- [90, 180, 56],
27
- [155, 102, 200],
28
- [33, 147, 176],
29
- [255, 183, 76],
30
- [67, 123, 89],
31
- [190, 60, 45],
32
- [134, 112, 200],
33
- [56, 45, 189],
34
- [200, 56, 123],
35
- [87, 92, 204],
36
- [120, 56, 123],
37
- [45, 78, 123],
38
- [156, 200, 56],
39
- [32, 90, 210],
40
- [56, 123, 67],
41
- [180, 56, 123],
42
- [123, 67, 45],
43
- [45, 134, 200],
44
- [67, 56, 123],
45
- [78, 123, 67],
46
- [32, 210, 90],
47
- [45, 56, 189],
48
- [123, 56, 123],
49
- [56, 156, 200],
50
- [189, 56, 45],
51
- [112, 200, 56],
52
- [56, 123, 45],
53
- [200, 32, 90],
54
- [123, 45, 78],
55
- [200, 156, 56],
56
- [45, 67, 123],
57
- [56, 45, 78],
58
- [45, 56, 123],
59
- [123, 67, 56],
60
- [56, 78, 123],
61
- [210, 90, 32],
62
- [123, 56, 189],
63
- [45, 200, 134],
64
- [67, 123, 56],
65
- [123, 45, 67],
66
- [90, 32, 210],
67
- [200, 45, 78],
68
- [32, 210, 90],
69
- [45, 123, 67],
70
- [165, 42, 87],
71
- [72, 145, 167],
72
- [15, 158, 75],
73
- [209, 89, 40],
74
- [32, 21, 121],
75
- [184, 20, 100],
76
- [56, 135, 15],
77
- [128, 92, 176],
78
- [1, 119, 140],
79
- [220, 151, 43],
80
- [41, 97, 72],
81
- [148, 38, 27],
82
- [107, 86, 176],
83
- [21, 26, 136],
84
- [174, 27, 90],
85
- [91, 96, 204],
86
- [108, 50, 107],
87
- [27, 45, 136],
88
- [168, 200, 52],
89
- [7, 102, 27],
90
- [42, 93, 56],
91
- [140, 52, 112],
92
- [92, 107, 168],
93
- [17, 118, 176],
94
- [59, 50, 174],
95
- [206, 40, 143],
96
- [44, 19, 142],
97
- [23, 168, 75],
98
- [54, 57, 189],
99
- [144, 21, 15],
100
- [15, 176, 35],
101
- [107, 19, 79],
102
- [204, 52, 114],
103
- [48, 173, 83],
104
- [11, 120, 53],
105
- [206, 104, 28],
106
- [20, 31, 153],
107
- [27, 21, 93],
108
- [11, 206, 138],
109
- [112, 30, 83],
110
- [68, 91, 152],
111
- [153, 13, 43],
112
- [25, 114, 54],
113
- [92, 27, 150],
114
- [108, 42, 59],
115
- [194, 77, 5],
116
- [145, 48, 83],
117
- [7, 113, 19],
118
- [25, 92, 113],
119
- [60, 168, 79],
120
- [78, 33, 120],
121
- [89, 176, 205],
122
- [27, 200, 94],
123
- [210, 67, 23],
124
- [123, 89, 189],
125
- [225, 56, 112],
126
- [75, 156, 45],
127
- [172, 104, 200],
128
- [15, 170, 197],
129
- [240, 133, 65],
130
- [89, 156, 112],
131
- [214, 88, 57],
132
- [156, 134, 200],
133
- [78, 57, 189],
134
- [200, 78, 123],
135
- [106, 120, 210],
136
- [145, 56, 112],
137
- [89, 120, 189],
138
- [185, 206, 56],
139
- [47, 99, 28],
140
- [112, 189, 78],
141
- [200, 112, 89],
142
- [89, 145, 112],
143
- [78, 106, 189],
144
- [112, 78, 189],
145
- [156, 112, 78],
146
- [28, 210, 99],
147
- [78, 89, 189],
148
- [189, 78, 57],
149
- [112, 200, 78],
150
- [189, 47, 78],
151
- [205, 112, 57],
152
- [78, 145, 57],
153
- [200, 78, 112],
154
- [99, 89, 145],
155
- [200, 156, 78],
156
- [57, 78, 145],
157
- [78, 57, 99],
158
- [57, 78, 145],
159
- [145, 112, 78],
160
- [78, 89, 145],
161
- [210, 99, 28],
162
- [145, 78, 189],
163
- [57, 200, 136],
164
- [89, 156, 78],
165
- [145, 78, 99],
166
- [99, 28, 210],
167
- [189, 78, 47],
168
- [28, 210, 99],
169
- [78, 145, 57],
170
- ]
171
-
172
- labels_list = []
173
-
174
- with open(r'labels.txt', 'r') as fp:
175
- for line in fp:
176
- labels_list.append(line[:-1])
177
-
178
- colormap = np.asarray(ade_palette())
179
-
180
- def label_to_color_image(label):
181
- if label.ndim != 2:
182
- raise ValueError("Expect 2-D input label")
183
-
184
- if np.max(label) >= len(colormap):
185
- raise ValueError("label value too large.")
186
- return colormap[label]
187
-
188
- def draw_plot(pred_img, seg):
189
- fig = plt.figure(figsize=(20, 15))
190
-
191
- grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
192
-
193
- plt.subplot(grid_spec[0])
194
- plt.imshow(pred_img)
195
- plt.axis('off')
196
- LABEL_NAMES = np.asarray(labels_list)
197
- FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
198
- FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
199
-
200
- unique_labels = np.unique(seg.numpy().astype("uint8"))
201
- ax = plt.subplot(grid_spec[1])
202
- plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
203
- ax.yaxis.tick_right()
204
- plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
205
- plt.xticks([], [])
206
- ax.tick_params(width=0.0, labelsize=25)
207
- return fig
208
-
209
- def sepia(input_img):
210
- input_img = Image.fromarray(input_img)
211
-
212
- inputs = feature_extractor(images=input_img, return_tensors="tf")
213
- outputs = model(**inputs)
214
- logits = outputs.logits
215
-
216
- logits = tf.transpose(logits, [0, 2, 3, 1])
217
- logits = tf.image.resize(
218
- logits, input_img.size[::-1]
219
- ) # We reverse the shape of `image` because `image.size` returns width and height.
220
- seg = tf.math.argmax(logits, axis=-1)[0]
221
-
222
- color_seg = np.zeros(
223
- (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
224
- ) # height, width, 3
225
- for label, color in enumerate(colormap):
226
- color_seg[seg.numpy() == label, :] = color
227
-
228
- # Show image + mask
229
- pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
230
- pred_img = pred_img.astype(np.uint8)
231
-
232
- fig = draw_plot(pred_img, seg)
233
- return fig
234
-
235
- demo = gr.Interface(fn=sepia,
236
- inputs=gr.Image(shape=(400, 600)),
237
- outputs=['plot'],
238
- examples=["ADE_val_00000001.jpeg", "ADE_val_00001159.jpg", "ADE_val_00001248.jpg", "ADE_val_00001472.jpg"],
239
- allow_flagging='never')
240
-
241
-
242
- demo.launch()