Spaces:
Runtime error
Runtime error
Delete app (2).py
Browse files- app (2).py +0 -242
app (2).py
DELETED
@@ -1,242 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
from matplotlib import gridspec
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
import numpy as np
|
6 |
-
from PIL import Image
|
7 |
-
import tensorflow as tf
|
8 |
-
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
9 |
-
|
10 |
-
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
11 |
-
"nvidia/segformer-b5-finetuned-ade-640-640"
|
12 |
-
)
|
13 |
-
model = TFSegformerForSemanticSegmentation.from_pretrained(
|
14 |
-
"nvidia/segformer-b5-finetuned-ade-640-640"
|
15 |
-
)
|
16 |
-
|
17 |
-
def ade_palette():
|
18 |
-
"""ADE20K palette that maps each class to RGB values."""
|
19 |
-
return [
|
20 |
-
[204, 87, 92],
|
21 |
-
[112, 185, 212],
|
22 |
-
[45, 189, 106],
|
23 |
-
[234, 123, 67],
|
24 |
-
[78, 56, 123],
|
25 |
-
[210, 32, 89],
|
26 |
-
[90, 180, 56],
|
27 |
-
[155, 102, 200],
|
28 |
-
[33, 147, 176],
|
29 |
-
[255, 183, 76],
|
30 |
-
[67, 123, 89],
|
31 |
-
[190, 60, 45],
|
32 |
-
[134, 112, 200],
|
33 |
-
[56, 45, 189],
|
34 |
-
[200, 56, 123],
|
35 |
-
[87, 92, 204],
|
36 |
-
[120, 56, 123],
|
37 |
-
[45, 78, 123],
|
38 |
-
[156, 200, 56],
|
39 |
-
[32, 90, 210],
|
40 |
-
[56, 123, 67],
|
41 |
-
[180, 56, 123],
|
42 |
-
[123, 67, 45],
|
43 |
-
[45, 134, 200],
|
44 |
-
[67, 56, 123],
|
45 |
-
[78, 123, 67],
|
46 |
-
[32, 210, 90],
|
47 |
-
[45, 56, 189],
|
48 |
-
[123, 56, 123],
|
49 |
-
[56, 156, 200],
|
50 |
-
[189, 56, 45],
|
51 |
-
[112, 200, 56],
|
52 |
-
[56, 123, 45],
|
53 |
-
[200, 32, 90],
|
54 |
-
[123, 45, 78],
|
55 |
-
[200, 156, 56],
|
56 |
-
[45, 67, 123],
|
57 |
-
[56, 45, 78],
|
58 |
-
[45, 56, 123],
|
59 |
-
[123, 67, 56],
|
60 |
-
[56, 78, 123],
|
61 |
-
[210, 90, 32],
|
62 |
-
[123, 56, 189],
|
63 |
-
[45, 200, 134],
|
64 |
-
[67, 123, 56],
|
65 |
-
[123, 45, 67],
|
66 |
-
[90, 32, 210],
|
67 |
-
[200, 45, 78],
|
68 |
-
[32, 210, 90],
|
69 |
-
[45, 123, 67],
|
70 |
-
[165, 42, 87],
|
71 |
-
[72, 145, 167],
|
72 |
-
[15, 158, 75],
|
73 |
-
[209, 89, 40],
|
74 |
-
[32, 21, 121],
|
75 |
-
[184, 20, 100],
|
76 |
-
[56, 135, 15],
|
77 |
-
[128, 92, 176],
|
78 |
-
[1, 119, 140],
|
79 |
-
[220, 151, 43],
|
80 |
-
[41, 97, 72],
|
81 |
-
[148, 38, 27],
|
82 |
-
[107, 86, 176],
|
83 |
-
[21, 26, 136],
|
84 |
-
[174, 27, 90],
|
85 |
-
[91, 96, 204],
|
86 |
-
[108, 50, 107],
|
87 |
-
[27, 45, 136],
|
88 |
-
[168, 200, 52],
|
89 |
-
[7, 102, 27],
|
90 |
-
[42, 93, 56],
|
91 |
-
[140, 52, 112],
|
92 |
-
[92, 107, 168],
|
93 |
-
[17, 118, 176],
|
94 |
-
[59, 50, 174],
|
95 |
-
[206, 40, 143],
|
96 |
-
[44, 19, 142],
|
97 |
-
[23, 168, 75],
|
98 |
-
[54, 57, 189],
|
99 |
-
[144, 21, 15],
|
100 |
-
[15, 176, 35],
|
101 |
-
[107, 19, 79],
|
102 |
-
[204, 52, 114],
|
103 |
-
[48, 173, 83],
|
104 |
-
[11, 120, 53],
|
105 |
-
[206, 104, 28],
|
106 |
-
[20, 31, 153],
|
107 |
-
[27, 21, 93],
|
108 |
-
[11, 206, 138],
|
109 |
-
[112, 30, 83],
|
110 |
-
[68, 91, 152],
|
111 |
-
[153, 13, 43],
|
112 |
-
[25, 114, 54],
|
113 |
-
[92, 27, 150],
|
114 |
-
[108, 42, 59],
|
115 |
-
[194, 77, 5],
|
116 |
-
[145, 48, 83],
|
117 |
-
[7, 113, 19],
|
118 |
-
[25, 92, 113],
|
119 |
-
[60, 168, 79],
|
120 |
-
[78, 33, 120],
|
121 |
-
[89, 176, 205],
|
122 |
-
[27, 200, 94],
|
123 |
-
[210, 67, 23],
|
124 |
-
[123, 89, 189],
|
125 |
-
[225, 56, 112],
|
126 |
-
[75, 156, 45],
|
127 |
-
[172, 104, 200],
|
128 |
-
[15, 170, 197],
|
129 |
-
[240, 133, 65],
|
130 |
-
[89, 156, 112],
|
131 |
-
[214, 88, 57],
|
132 |
-
[156, 134, 200],
|
133 |
-
[78, 57, 189],
|
134 |
-
[200, 78, 123],
|
135 |
-
[106, 120, 210],
|
136 |
-
[145, 56, 112],
|
137 |
-
[89, 120, 189],
|
138 |
-
[185, 206, 56],
|
139 |
-
[47, 99, 28],
|
140 |
-
[112, 189, 78],
|
141 |
-
[200, 112, 89],
|
142 |
-
[89, 145, 112],
|
143 |
-
[78, 106, 189],
|
144 |
-
[112, 78, 189],
|
145 |
-
[156, 112, 78],
|
146 |
-
[28, 210, 99],
|
147 |
-
[78, 89, 189],
|
148 |
-
[189, 78, 57],
|
149 |
-
[112, 200, 78],
|
150 |
-
[189, 47, 78],
|
151 |
-
[205, 112, 57],
|
152 |
-
[78, 145, 57],
|
153 |
-
[200, 78, 112],
|
154 |
-
[99, 89, 145],
|
155 |
-
[200, 156, 78],
|
156 |
-
[57, 78, 145],
|
157 |
-
[78, 57, 99],
|
158 |
-
[57, 78, 145],
|
159 |
-
[145, 112, 78],
|
160 |
-
[78, 89, 145],
|
161 |
-
[210, 99, 28],
|
162 |
-
[145, 78, 189],
|
163 |
-
[57, 200, 136],
|
164 |
-
[89, 156, 78],
|
165 |
-
[145, 78, 99],
|
166 |
-
[99, 28, 210],
|
167 |
-
[189, 78, 47],
|
168 |
-
[28, 210, 99],
|
169 |
-
[78, 145, 57],
|
170 |
-
]
|
171 |
-
|
172 |
-
labels_list = []
|
173 |
-
|
174 |
-
with open(r'labels.txt', 'r') as fp:
|
175 |
-
for line in fp:
|
176 |
-
labels_list.append(line[:-1])
|
177 |
-
|
178 |
-
colormap = np.asarray(ade_palette())
|
179 |
-
|
180 |
-
def label_to_color_image(label):
|
181 |
-
if label.ndim != 2:
|
182 |
-
raise ValueError("Expect 2-D input label")
|
183 |
-
|
184 |
-
if np.max(label) >= len(colormap):
|
185 |
-
raise ValueError("label value too large.")
|
186 |
-
return colormap[label]
|
187 |
-
|
188 |
-
def draw_plot(pred_img, seg):
|
189 |
-
fig = plt.figure(figsize=(20, 15))
|
190 |
-
|
191 |
-
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
192 |
-
|
193 |
-
plt.subplot(grid_spec[0])
|
194 |
-
plt.imshow(pred_img)
|
195 |
-
plt.axis('off')
|
196 |
-
LABEL_NAMES = np.asarray(labels_list)
|
197 |
-
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
198 |
-
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
199 |
-
|
200 |
-
unique_labels = np.unique(seg.numpy().astype("uint8"))
|
201 |
-
ax = plt.subplot(grid_spec[1])
|
202 |
-
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
|
203 |
-
ax.yaxis.tick_right()
|
204 |
-
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
|
205 |
-
plt.xticks([], [])
|
206 |
-
ax.tick_params(width=0.0, labelsize=25)
|
207 |
-
return fig
|
208 |
-
|
209 |
-
def sepia(input_img):
|
210 |
-
input_img = Image.fromarray(input_img)
|
211 |
-
|
212 |
-
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
213 |
-
outputs = model(**inputs)
|
214 |
-
logits = outputs.logits
|
215 |
-
|
216 |
-
logits = tf.transpose(logits, [0, 2, 3, 1])
|
217 |
-
logits = tf.image.resize(
|
218 |
-
logits, input_img.size[::-1]
|
219 |
-
) # We reverse the shape of `image` because `image.size` returns width and height.
|
220 |
-
seg = tf.math.argmax(logits, axis=-1)[0]
|
221 |
-
|
222 |
-
color_seg = np.zeros(
|
223 |
-
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
224 |
-
) # height, width, 3
|
225 |
-
for label, color in enumerate(colormap):
|
226 |
-
color_seg[seg.numpy() == label, :] = color
|
227 |
-
|
228 |
-
# Show image + mask
|
229 |
-
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
230 |
-
pred_img = pred_img.astype(np.uint8)
|
231 |
-
|
232 |
-
fig = draw_plot(pred_img, seg)
|
233 |
-
return fig
|
234 |
-
|
235 |
-
demo = gr.Interface(fn=sepia,
|
236 |
-
inputs=gr.Image(shape=(400, 600)),
|
237 |
-
outputs=['plot'],
|
238 |
-
examples=["ADE_val_00000001.jpeg", "ADE_val_00001159.jpg", "ADE_val_00001248.jpg", "ADE_val_00001472.jpg"],
|
239 |
-
allow_flagging='never')
|
240 |
-
|
241 |
-
|
242 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|