Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = ["app"]
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
from transformers import AutoConfig, AutoTokenizer, DataCollatorWithPadding, DebertaV2ForSequenceClassification
|
7 |
+
|
8 |
+
MINIMUM_TOKENS = 48
|
9 |
+
FOUNDATION_MODEL_NAME = "binh230/deberta-base"
|
10 |
+
# Load the tokenizer and model for DeBERTa
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(FOUNDATION_MODEL_NAME)
|
12 |
+
config = AutoConfig.from_pretrained(FOUNDATION_MODEL_NAME)
|
13 |
+
config.num_labels = 2 # For binary classification
|
14 |
+
model = DebertaV2ForSequenceClassification.from_pretrained(FOUNDATION_MODEL_NAME, config=config)
|
15 |
+
model.to("cuda")
|
16 |
+
|
17 |
+
# Text processing and prediction function
|
18 |
+
def count_tokens(text):
|
19 |
+
return len(text.split())
|
20 |
+
|
21 |
+
def run_detector(input_str):
|
22 |
+
if count_tokens(input_str) < MINIMUM_TOKENS:
|
23 |
+
return f"Too short length. Need minimum {MINIMUM_TOKENS} tokens to run Binoculars."
|
24 |
+
|
25 |
+
# Tokenize input text
|
26 |
+
inputs = tokenizer(input_str, return_tensors="pt", padding=True, truncation=True).to("cuda")
|
27 |
+
|
28 |
+
# Run model and get prediction
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = model(**inputs)
|
31 |
+
logits = outputs.logits
|
32 |
+
prediction = torch.argmax(logits, dim=-1).item()
|
33 |
+
|
34 |
+
# Interpret prediction
|
35 |
+
return "Most likely AI-Generated" if prediction == 1 else "Most likely Human-Generated"
|
36 |
+
|
37 |
+
# Gradio app interface
|
38 |
+
css = """
|
39 |
+
.green { color: black!important; line-height:1.9em; padding: 0.2em 0.2em; background: #ccffcc; border-radius:0.5rem;}
|
40 |
+
.red { color: black!important; line-height:1.9em; padding: 0.2em 0.2em; background: #ffad99; border-radius:0.5rem;}
|
41 |
+
.hyperlinks {
|
42 |
+
display: flex;
|
43 |
+
align-items: center;
|
44 |
+
align-content: center;
|
45 |
+
padding-top: 12px;
|
46 |
+
justify-content: flex-end;
|
47 |
+
margin: 0 10px;
|
48 |
+
text-decoration: none;
|
49 |
+
color: #000;
|
50 |
+
}
|
51 |
+
"""
|
52 |
+
|
53 |
+
capybara_problem = '''Dr. Capy Cosmos, a capybara unlike any other, astounded the scientific community with his groundbreaking research...'''
|
54 |
+
|
55 |
+
with gr.Blocks(css=css, theme=gr.themes.Default(font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"])) as app:
|
56 |
+
with gr.Row():
|
57 |
+
with gr.Column(scale=3):
|
58 |
+
gr.HTML("<h1>Mambaformer Detecting AI generated text</h1>")
|
59 |
+
with gr.Column(scale=1):
|
60 |
+
gr.HTML("""
|
61 |
+
<p>
|
62 |
+
<a href="https://github.com/DanielBinh2k3/Mamba-AI-generated-text-detection" target="_blank">code</a>
|
63 |
+
<a href="mailto:[email protected]" target="_blank">contact</a>
|
64 |
+
</p>
|
65 |
+
""", elem_classes="hyperlinks")
|
66 |
+
|
67 |
+
with gr.Row():
|
68 |
+
input_box = gr.Textbox(value=capybara_problem, placeholder="Enter text here", lines=8, label="Input Text")
|
69 |
+
with gr.Row():
|
70 |
+
submit_button = gr.Button("Run Detection", variant="primary")
|
71 |
+
clear_button = gr.ClearButton()
|
72 |
+
with gr.Row():
|
73 |
+
output_text = gr.Textbox(label="Prediction", value="Most likely AI-Generated")
|
74 |
+
|
75 |
+
with gr.Accordion("Disclaimer", open=False):
|
76 |
+
gr.Markdown("""
|
77 |
+
- `Accuracy`: AI-generated text detectors aim for accuracy, but no detector is perfect.
|
78 |
+
- `Use Cases`: This tool is most useful for detecting AI-generated content in moderation scenarios.
|
79 |
+
- `Known Weaknesses`: Non-English texts and highly memorized texts (like constitutions) may yield unreliable results.
|
80 |
+
""")
|
81 |
+
|
82 |
+
with gr.Accordion("Cite our work", open=False):
|
83 |
+
gr.Markdown("""
|
84 |
+
```bibtex
|
85 |
+
@misc{BamBa2024llm,
|
86 |
+
title={Enhancing AI Text Detection through MambaFormer and Adversarial Learning Techniques},
|
87 |
+
author={Truong Nguyen Gia Binh},
|
88 |
+
year={2024},
|
89 |
+
eprint={},
|
90 |
+
archivePrefix={},
|
91 |
+
primaryClass={}
|
92 |
+
}
|
93 |
+
```
|
94 |
+
""")
|
95 |
+
|
96 |
+
submit_button.click(run_detector, inputs=input_box, outputs=output_text)
|
97 |
+
clear_button.click(lambda: ("", ""), outputs=[input_box, output_text])
|
98 |
+
|
99 |
+
# Run the Gradio app
|
100 |
+
if __name__ == "__main__":
|
101 |
+
app.launch(share=True)
|