bintangyosua's picture
Update app.py
fd7dca3 verified
import marimo
__generated_with = "0.9.15"
app = marimo.App(width="full")
@app.cell(hide_code=True)
def __(mo):
mo.md(
"""
# Political Ideologies Analysis
This project provides a detailed analysis of political ideologies using data from the Huggingface Political Ideologies dataset. The code leverages various data science libraries and visualization tools to map, analyze, and visualize political ideology text data.
Project Structure
This analysis is based on huggingface dataset repository. <br>
You can visit right [here](https://huggingface.co/datasets/JyotiNayak/political_ideologies)
"""
)
return
@app.cell(hide_code=True)
def __(form, mo, try_predict):
text_classified = 'Please write something'
if (form.value):
text_classified = try_predict(form.value)
mo.vstack([form, mo.md(f"Your Opinion Classified as: **{text_classified}**")])
return (text_classified,)
@app.cell(hide_code=True)
def __():
import os
import marimo as mo
import pandas as pd
import numpy as np
import random
import matplotlib.pyplot as plt
import seaborn as sns
import altair as alt
from gensim.models import Word2Vec
from sklearn.manifold import TSNE
from umap import UMAP
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, Bidirectional, LSTM, Dense
import re
import string
from gensim.models import FastText
from wordcloud import WordCloud
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
from nltk.stem.porter import PorterStemmer
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
import joblib
import nltk
mo.md("""
## 1. Import all libraries needed
The initial cells import the necessary libraries for data handling, visualization, and word embedding.
""")
return (
Bidirectional,
Dense,
EarlyStopping,
Embedding,
FastText,
LSTM,
PorterStemmer,
ReduceLROnPlateau,
Sequential,
TSNE,
Tokenizer,
UMAP,
Word2Vec,
WordCloud,
WordNetLemmatizer,
accuracy_score,
alt,
classification_report,
joblib,
mo,
nltk,
np,
os,
pad_sequences,
pd,
plt,
random,
re,
sns,
stopwords,
string,
tf,
train_test_split,
word_tokenize,
)
@app.cell(hide_code=True)
def __():
return
@app.cell(hide_code=True)
def __(mo):
mo.md(
"""
Here are the mapped of label and issue type columns.
```yaml
Label Mapping: {'conservative': 0, 'liberal': 1 }
Issue Type Mapping: {
'economic': 0, 'environmental': 1,
'family/gender': 2, 'geo-political and foreign policy': 3,
'political': 4, 'racial justice and immigration': 5,
'religious': 6, 'social, health and education': 7
}
```
"""
)
return
@app.cell(hide_code=True)
def __(mo, pd):
df = pd.read_parquet('train.parquet')
df_val = pd.read_parquet('val.parquet')
df_test = pd.read_parquet('test.parquet')
df = df.drop('__index_level_0__', axis=1)
mo.md("""
## 2. Dataset Loading
The dataset files (`train.parquet`, `val.parquet`, and `test.parquet`) are loaded, concatenated, and cleaned to form a single DataFrame (df). Columns are mapped to readable labels for ease of understanding.
""")
return df, df_test, df_val
@app.cell(hide_code=True)
def __():
label_mapping = {
'conservative': 0,
'liberal': 1
}
issue_type_mapping = {
'economic': 0,
'environmental': 1,
'family/gender': 2,
'geo-political and foreign policy': 3,
'political': 4,
'racial justice and immigration': 5,
'religious': 6,
'social, health and education': 7
}
return issue_type_mapping, label_mapping
@app.cell(hide_code=True)
def __(issue_type_mapping, label_mapping):
label_mapping_reversed = {v: k for k, v in label_mapping.items()}
issue_type_mapping_reversed = {v: k for k, v in issue_type_mapping.items()}
print(label_mapping_reversed)
print(issue_type_mapping_reversed)
return issue_type_mapping_reversed, label_mapping_reversed
@app.cell(hide_code=True)
def __(df, issue_type_mapping_reversed, label_mapping_reversed, mo):
df['label_text'] = df['label'].replace(label_mapping_reversed)
df['issue_type_text'] = df['issue_type'].replace(issue_type_mapping_reversed)
labels_grouped = df['label_text'].value_counts().rename_axis('label_text').reset_index(name='counts')
issue_types_grouped = (
df["issue_type_text"]
.value_counts()
.rename_axis("issue_type_text")
.reset_index(name="counts")
)
mo.md("""
## 3. Mapping Labels and Issue Types
Two dictionaries map labels (conservative and liberal) and issue types (e.g., economic, environmental, etc.) to numerical values for machine learning purposes. Reversed mappings are created to convert numerical labels back into their text form.
""")
return issue_types_grouped, labels_grouped
@app.cell(hide_code=True)
def __(df):
df.iloc[:, :6].head(7)
return
@app.cell(hide_code=True)
def __(mo):
mo.md(
"""
## 4. Visualizing Data Distributions
Bar plots visualize the proportions of conservative vs. liberal ideologies and the count of different issue types. These provide an overview of the dataset composition.
"""
)
return
@app.cell(hide_code=True)
def __(alt, labels_grouped, mo):
mo.ui.altair_chart(
alt.Chart(labels_grouped).mark_bar(
fill='#4C78A8',
cursor='pointer',
).encode(
x=alt.X('label_text', axis=alt.Axis(labelAngle=0)),
y='counts:Q'
)
)
return
@app.cell(hide_code=True)
def __(alt, issue_types_grouped, mo):
mo.ui.altair_chart(
alt.Chart(issue_types_grouped)
.mark_bar(
fill="#4C78A8",
cursor="pointer",
)
.encode(
x=alt.X(
"issue_type_text:O",
axis=alt.Axis(
labelAngle=-10, labelAlign="center", labelPadding=10
),
),
y="counts:Q",
)
)
return
@app.cell(hide_code=True)
def __(mo):
mo.md(
r"""
## 5. Text Preprocessing
Texts preprocessed to remove any ineffective words.
"""
)
return
@app.cell(hide_code=True)
def __(WordCloud, df):
all_text = ''.join(df['statement'])
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(all_text)
return all_text, wordcloud
@app.cell(hide_code=True)
def __(plt, wordcloud):
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis='off'
plt.plot()
plt.gca()
return
@app.cell(hide_code=True)
def __(WordNetLemmatizer, nltk, stopwords):
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')
lemmatizer = WordNetLemmatizer()
stop_words = set(stopwords.words('english'))
return lemmatizer, stop_words
@app.cell(hide_code=True)
def __(lemmatizer, re, stop_words, word_tokenize):
# Function for preprocessing text
def preprocess_text(text):
# 1. Lowercase the text
text = text.lower()
# 2. Remove punctuation and non-alphabetical characters
text = re.sub(r'[^a-z\s]', '', text)
# 3. Tokenize the text
tokens = word_tokenize(text)
# 4. Remove stopwords and lemmatize each token
processed_tokens = [lemmatizer.lemmatize(token) for token in tokens if token not in stop_words]
return processed_tokens
return (preprocess_text,)
@app.cell(hide_code=True)
def __(df, df_test, df_val, preprocess_text):
# Terapkan fungsi preprocessing pada kolom 'statement'
df['processed_statement'] = df['statement'].apply(preprocess_text)
df_val['processed_statement'] = df_val['statement'].apply(preprocess_text)
df_test['processed_statement'] = df_test['statement'].apply(preprocess_text)
processed_statement = df['processed_statement']
return (processed_statement,)
@app.cell(hide_code=True)
def __(mo):
mo.md(r"""## 6. Word Embeddings""")
return
@app.cell(hide_code=True)
def __(np):
def get_doc_embedding(tokens, embeddings_model):
vectors = [embeddings_model.wv[word] for word in tokens if word in embeddings_model.wv]
if vectors:
return np.mean(vectors, axis=0)
else:
return np.zeros(embeddings_model.vector_size)
return (get_doc_embedding,)
@app.cell(hide_code=True)
def __(FastText, Word2Vec, processed_statement):
embedding_models = {
'fasttext': FastText(sentences=processed_statement, vector_size=100, window=3, min_count=1, seed=0, workers=1),
'word2vec': Word2Vec(sentences=processed_statement, vector_size=100, window=3, min_count=1, seed=0, workers=1)
}
return (embedding_models,)
@app.cell(hide_code=True)
def __(mo):
mo.md(r"""### 6.1 Word Embedding using FastText and Word2Vec""")
return
@app.cell(hide_code=True)
def __(mo):
mo.md(
"""
#### Dimensionality Reduction using UMAP
Embeddings are projected into a 2D space using UMAP for visualization. The embeddings are colored by issue type, showing clusters of similar statements.
Interactive scatter plots in Altair show ideology and issue types in 2D space. A brush selection tool allows users to explore specific points and view tooltip information.
#### Combined Scatter Plot
Combines the two scatter plots into a side-by-side visualization for direct comparison of ideologies vs. issue types.
Running the Code
Run the code using the marimo.App instance. This notebook can also be run as a standalone Python script:
"""
)
return
@app.cell(hide_code=True)
def __(UMAP, alt, df, mo, np):
def word_embedding_2d(embedding_model, embedding_model_name):
embeddings_matrix = np.vstack(df[f'embeddings_{embedding_model_name}'].values)
umap = UMAP(n_components=2, random_state=42)
umap_results = umap.fit_transform(embeddings_matrix)
df[f'{embedding_model_name}_x'] = umap_results[:, 0]
df[f'{embedding_model_name}_y'] = umap_results[:, 1]
brush = alt.selection_interval()
size = 350
points1 = alt.Chart(df, height=size, width=size).mark_point().encode(
x=f'{embedding_model_name}_x:Q',
y=f'{embedding_model_name}_y:Q',
color=alt.condition(brush, 'label_text', alt.value('grey')),
tooltip=[f'{embedding_model_name}_x:Q', f'{embedding_model_name}_y:Q', 'statement:N', 'label_text:N']
).add_params(brush).properties(title='By Political Ideologies')
scatter_chart1 = mo.ui.altair_chart(points1)
points2 = alt.Chart(df, height=size, width=size).mark_point().encode(
x=f'{embedding_model_name}_x:Q',
y=f'{embedding_model_name}_y:Q',
color=alt.condition(brush, 'issue_type_text', alt.value('grey')),
tooltip=[f'{embedding_model_name}_x:Q', f'{embedding_model_name}_y:Q', 'statement:N', 'issue_type:N']
).add_params(brush).properties(title='By Issue Types')
scatter_chart2 = mo.ui.altair_chart(points2)
combined_chart = (scatter_chart1 | scatter_chart2)
return combined_chart
return (word_embedding_2d,)
@app.cell(hide_code=True)
def __(
df,
df_test,
df_val,
embedding_models,
get_doc_embedding,
word_embedding_2d,
):
for name, embedding_model in embedding_models.items():
df['embeddings_' + name] = df['processed_statement'].apply(lambda x: get_doc_embedding(x, embedding_model))
df_val['embeddings_' + name] = df_val['processed_statement'].apply(lambda x: get_doc_embedding(x, embedding_model))
df_test['embeddings_' + name] = df_test['processed_statement'].apply(lambda x: get_doc_embedding(x, embedding_model))
fasttext_plot = word_embedding_2d(embedding_models['fasttext'], 'fasttext')
word2vec_plot = word_embedding_2d(embedding_models['word2vec'], 'word2vec')
test_embeddings_fasttext = df_test['embeddings_fasttext']
return (
embedding_model,
fasttext_plot,
name,
test_embeddings_fasttext,
word2vec_plot,
)
@app.cell(hide_code=True)
def __(fasttext_plot, mo):
fasttext_table = fasttext_plot.value[['statement', 'label_text', 'issue_type_text']]
fasttext_chart = mo.vstack([
fasttext_plot,
fasttext_table
])
return fasttext_chart, fasttext_table
@app.cell(hide_code=True)
def __(mo, word2vec_plot):
word2vec_table = word2vec_plot.value[['statement', 'label_text', 'issue_type_text']]
word2vec_chart = mo.vstack([
word2vec_plot,
word2vec_table
])
return word2vec_chart, word2vec_table
@app.cell(hide_code=True)
def __(fasttext_chart, mo, word2vec_chart):
mo.ui.tabs({
'FastText': fasttext_chart,
'Word2Vec': word2vec_chart
})
return
@app.cell(hide_code=True)
def __(mo):
mo.md(
r"""
## Data Insights
- Ideology Distribution: Visualizes proportions of conservative and liberal ideologies.
- Issue Types: Bar plot reveals the diversity and frequency of issue types in the dataset.
- Word Embeddings: Using UMAP for 2D projections helps identify clusters in political statements.
- Interactive Exploration: Offers detailed, interactive views on ideology vs. issue type distribution.
This code provides a thorough analysis pipeline, from data loading to interactive visualizations, enabling an in-depth exploration of political ideologies.
"""
)
return
@app.cell(hide_code=True)
def __(mo):
mo.md(
r"""
## Building Model
```python
clf_model = Sequential()
clf_model.add(Bidirectional(tf.keras.layers.GRU(64,
activation='relu',
# return_sequences=True,
input_shape=(sent_length, input_dim),
kernel_regularizer=tf.keras.regularizers.l2(0.001)))) # L2 regularization
clf_model.add(tf.keras.layers.Dropout(0.5))
clf_model.add(Dense(2,
activation='softmax',
kernel_regularizer=tf.keras.regularizers.l2(0.001))) # L2 regularization in the Dense layer
```
"""
)
return
@app.cell(hide_code=True)
def __(df_test, np, test_embeddings_fasttext):
# X_train = np.array(df['embeddings_fasttext'].tolist())
# X_train = X_train.reshape((X_train.shape[0], 1, X_train.shape[1]))
# y_train = df['label'].values
# X_val = np.array(df_val['embeddings_fasttext'].tolist())
# X_val = X_val.reshape((X_val.shape[0], 1, X_val.shape[1]))
# y_val = df_val['label'].values
X_test = np.array(test_embeddings_fasttext.tolist())
X_test = X_test.reshape((X_test.shape[0], 1, X_test.shape[1]))
y_test = df_test['label'].values
return X_test, y_test
@app.cell(hide_code=True)
def __():
# all_tokens = [token for tokens in df['processed_statement'] for token in tokens]
# vocab_size = len(set(all_tokens))
# vocab_size
# input_dim = X_train.shape[1] # Dimensi dari embedding yang digunakan (misalnya 50 atau 100)
# sent_length = X_train.shape[1] # Ukuran dimensi per embedding
# input_dim, sent_length
return
@app.cell(hide_code=True)
def __():
# seed_value = 345
# np.random.seed(seed_value)
# random.seed(seed_value)
# tf.random.set_seed(seed_value)
# clf_model = Sequential()
# clf_model.add(Bidirectional(tf.keras.layers.GRU(64,
# activation='relu',
# # return_sequences=True,
# input_shape=(sent_length, input_dim),
# kernel_regularizer=tf.keras.regularizers.l2(0.001)))) # L2 regularization
# clf_model.add(tf.keras.layers.Dropout(0.5))
# clf_model.add(Dense(2,
# activation='softmax',
# kernel_regularizer=tf.keras.regularizers.l2(0.001))) # L2 regularization in the Dense layer
# clf_model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# clf_model.summary()
return
@app.cell(hide_code=True)
def __():
# lr_scheduler = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=10, min_lr=1e-10)
# model_history = clf_model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=100, batch_size=16, verbose=2, callbacks=[lr_scheduler])
return
@app.cell(hide_code=True)
def __():
# clf_model.save('models/model_8812.keras')
# joblib.dump(model_history, 'history/history_model_8812.pkl')
return
@app.cell(hide_code=True)
def __():
loaded_model = tf.keras.models.load_model('models/model_8812.keras')
model_history_loaded = joblib.load('history/history_model_8812.pkl')
# loaded_model = clf_model
# model_history_loaded = model_history
return
@app.cell(hide_code=True)
def __(model_history_loaded, pd):
history_data = {
'epoch': range(1, len(model_history_loaded.history['accuracy']) + 1),
'accuracy': model_history_loaded.history['accuracy'],
'val_accuracy': model_history_loaded.history['val_accuracy'],
'loss': model_history_loaded.history['loss'],
'val_loss': model_history_loaded.history['val_loss']
}
history_df = pd.DataFrame(history_data)
return history_data, history_df
@app.cell(hide_code=True)
def __(alt, history_df, mo):
accuracy_chart = alt.Chart(history_df).transform_fold(
['accuracy', 'val_accuracy'],
as_=['type', 'accuracy']
).mark_line().encode(
x='epoch:Q',
y='accuracy:Q',
color='type:N',
tooltip=['epoch', 'accuracy']
).properties(title='Training and Validation Accuracy')
loss_chart = alt.Chart(history_df).transform_fold(
['loss', 'val_loss'],
as_=['type', 'loss']
).mark_line().encode(
x='epoch:Q',
y='loss:Q',
color='type:N',
tooltip=['epoch', 'loss']
).properties(title='Training and Validation Loss')
mo.hstack([accuracy_chart | loss_chart])
return accuracy_chart, loss_chart
@app.cell(hide_code=True)
def __(X_test, loaded_model, np):
y_pred = loaded_model.predict(X_test)
y_pred = np.argmax(y_pred, axis=1)
return (y_pred,)
@app.cell(hide_code=True)
def __(accuracy_score, mo, y_pred, y_test):
mo.md(f"Accuracy score: **{round(accuracy_score(y_test, y_pred) * 100, 2)}**%")
return
@app.cell(hide_code=True)
def __(classification_report, mo, y_pred, y_test):
with mo.redirect_stdout():
print(classification_report(y_test, y_pred))
return
@app.cell(hide_code=True)
def __(embedding_models, get_doc_embedding, loaded_model, preprocess_text):
def try_predict(text):
tokenized = preprocess_text(text)
embedded = get_doc_embedding(tokenized, embedding_models['fasttext'])
embedded = embedded.reshape(1, 1, -1)
prediction = loaded_model.predict(embedded)
predicted_class = prediction.argmax(axis=-1)
predicted_class = "Liberal" if predicted_class == 1 else "Conservative"
return predicted_class
return (try_predict,)
@app.cell(hide_code=True)
def __():
def validate(value):
if len(value.split()) < 15:
return 'Please enter more than 15 words.'
return (validate,)
@app.cell(hide_code=True)
def __(mo, validate):
form = mo.ui.text_area(placeholder="...").form(validate=validate)
return (form,)
if __name__ == "__main__":
app.run()