File size: 3,005 Bytes
0c1bad2 fdb6f4b 0c1bad2 fdb6f4b 6d70836 4e73bee 0c1bad2 fdb6f4b 0c1bad2 6d70836 0c1bad2 3f65192 6d70836 3f65192 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
# REQUIREMENTS
"""
!python -m pip -q install torchvision torch
!python -m pip -q install rasterio
!python -m pip -q install git+https://github.com/PatBall1/detectree2.git # in order for this to work, you must have installed gdal
!python -m pip install opencv-python
!python -m pip install requests
"""
from detectree2.preprocessing.tiling import tile_data
from detectree2.models.outputs import project_to_geojson, stitch_crowns, clean_crowns
from detectree2.models.predict import predict_on_data
from detectree2.models.train import setup_cfg
from detectron2.engine import DefaultPredictor
import rasterio
import os
import requests
#Somehow this tiles_path where the tilings are stored, only works if the absolute path is provided
#Do not use relative path
#Make sure that tiles_path ends with '/' otherwise the predict_on_data() will not work later
def create_tiles(input_path, tile_width, tile_height, tile_buffer):
img_path = input_path
current_directory = os.getcwd()
tiles_directory = os.path.join(current_directory, "tiles/")
if not os.path.exists(tiles_directory):
os.makedirs(tiles_directory)
data = rasterio.open(img_path)
buffer = tile_buffer
tile_width = tile_width
tile_height = tile_height
tile_data(data, tiles_directory, buffer, tile_width, tile_height, dtype_bool = True)
return tiles_directory
def download_file(url, local_filename):
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(local_filename, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
return local_filename
def predict(tile_path, overlap_threshold, confidence_threshold, simplify_value, store_path):
url = "https://zenodo.org/records/10522461/files/230103_randresize_full.pth"
trained_model = "./230103_randresize_full.pth"
download_file(url=url, local_filename=trained_model)
cfg = setup_cfg(update_model=trained_model, out_dir=store_path)
# hash the following line if you have gpu support
# cfg.MODEL.DEVICE = "cpu"
predict_on_data(tile_path, predictor=DefaultPredictor(cfg))
project_to_geojson(tile_path, tile_path + "predictions/", tile_path + "predictions_geo/")
crowns = stitch_crowns(tile_path + "predictions_geo/", 1)
clean = clean_crowns(crowns, overlap_threshold, confidence=confidence_threshold)
clean = clean.set_geometry(clean.simplify(simplify_value))
clean.to_file(store_path + "/detectree2_delin.geojson")
def run_detectree2(tif_input_path, store_path, tile_width=20, tile_height=20, tile_buffer=20, overlap_threshold=0.35, confidence_threshold=0.2, simplify_value=0.2):
tile_path = create_tiles(input_path=tif_input_path, tile_width=tile_width, tile_height=tile_height, tile_buffer=tile_buffer)
print(tile_path)
predict(tile_path=tile_path, overlap_threshold=overlap_threshold, confidence_threshold=confidence_threshold, simplify_value=simplify_value, store_path=store_path)
|