babypoby commited on
Commit
9372a94
·
1 Parent(s): 1db30eb
Files changed (1) hide show
  1. main.py +113 -22
main.py CHANGED
@@ -4,6 +4,15 @@ from generate_tree_images.generate_tree_images import generate_tree_images
4
  from classification.classification_predict import classify
5
  import os
6
  import json
 
 
 
 
 
 
 
 
 
7
 
8
  def row_to_feature(row):
9
  feature = {
@@ -40,40 +49,122 @@ tif_file_name: the file name of the tif input. tif_input is the folder in which
40
  output_directory: the directory were all in-between and final files are stored
41
 
42
  generate_tree_images stores the cutout tree images in a separate folder
 
43
  """
44
 
45
- tif_file_name = "TreeCrownVectorDataset_761588_9673769_20_20_32720.tif"
46
- tif_input = "/Users/jonathanseele/ETH/Hackathons/EcoHackathon/WeCanopy/test/" + tif_file_name
47
 
48
- current_directory = os.getcwd()
 
 
 
 
 
49
 
50
- output_directory = os.path.join(current_directory, "outputs")
51
- if not os.path.exists(output_directory):
52
- os.makedirs(output_directory)
53
 
54
- run_detectree2(tif_input, store_path=output_directory)
55
 
56
- processed_output_df = postprocess(output_directory + '/detectree2_delin.geojson', output_directory + '/processed_delin')
57
 
58
- processed_geojson = output_directory + '/processed_delin.geojson'
59
 
60
- generate_tree_images(processed_geojson, tif_input)
61
- output_folder = './tree_images'
62
 
63
- all_top_3_list = [] # Initialize an empty list to accumulate all top_3 lists
64
 
65
- for file_name in os.listdir(output_folder):
66
- file_path = os.path.join(output_folder, file_name)
67
- probs = classify(file_path)
68
- top_3 = probs.head(3)
69
- top_3_list = [[cls, prob] for cls, prob in top_3.items()]
70
 
71
- # Accumulate the top_3_list for each file
72
- all_top_3_list.append(top_3_list)
73
 
74
  # Assign the accumulated top_3_list to the 'species' column of the dataframe
75
- processed_output_df['species'] = all_top_3_list
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
- final_output_path = 'result'
78
- export_geojson(processed_output_df, final_output_path)
79
 
 
4
  from classification.classification_predict import classify
5
  import os
6
  import json
7
+ import gradio as gr
8
+ import rasterio
9
+ from rasterio.plot import show
10
+ import geopandas as gpd
11
+ import matplotlib.pyplot as plt
12
+ from shapely.geometry import Point
13
+
14
+
15
+
16
 
17
  def row_to_feature(row):
18
  feature = {
 
49
  output_directory: the directory were all in-between and final files are stored
50
 
51
  generate_tree_images stores the cutout tree images in a separate folder
52
+
53
  """
54
 
 
 
55
 
56
+ def greet(image_path: str):
57
+ current_directory = os.getcwd()
58
+
59
+ output_directory = os.path.join(current_directory, "outputs")
60
+ if not os.path.exists(output_directory):
61
+ os.makedirs(output_directory)
62
 
63
+ run_detectree2(image_path, store_path=output_directory)
 
 
64
 
65
+ processed_output_df = postprocess(output_directory + '/detectree2_delin.geojson', output_directory + '/processed_delin')
66
 
67
+ processed_geojson = output_directory + '/processed_delin.geojson'
68
 
69
+ generate_tree_images(processed_geojson, image_path)
70
 
71
+ output_folder = './tree_images'
 
72
 
73
+ all_top_3_list = [] # Initialize an empty list to accumulate all top_3 lists
74
 
75
+ for file_name in os.listdir(output_folder):
76
+ file_path = os.path.join(output_folder, file_name)
77
+ probs = classify(file_path)
78
+ top_3 = probs.head(3)
79
+ top_3_list = [[cls, prob] for cls, prob in top_3.items()]
80
 
81
+ # Accumulate the top_3_list for each file
82
+ all_top_3_list.append(top_3_list)
83
 
84
  # Assign the accumulated top_3_list to the 'species' column of the dataframe
85
+ processed_output_df['species'] = all_top_3_list
86
+
87
+ final_output_path = 'result'
88
+ export_geojson(processed_output_df, final_output_path)
89
+
90
+ with rasterio.open(image_path) as src:
91
+ tif_image = src.read([1, 2, 3]) # Read the first three bands (RGB)
92
+ tif_transform = src.transform
93
+
94
+ # Read the GeoJSON file
95
+ geojson_data = gpd.read_file(final_output_path)
96
+
97
+ # Set the interactive backend to Qt5Agg
98
+ plt.switch_backend('Qt5Agg') # You have to install PyQt5
99
+
100
+ # Enable interactive mode
101
+ plt.ion()
102
+
103
+ # Plotting
104
+ fig, ax = plt.subplots(figsize=(10, 10))
105
+
106
+ # Plot the RGB TIF image
107
+ show(tif_image, transform=tif_transform, ax=ax)
108
+
109
+ # Plot the GeoJSON polygons
110
+ geojson_data.plot(ax=ax, facecolor='none', edgecolor='red')
111
+
112
+ # Set plot title
113
+ ax.set_title('TIF Image with Tree Crowns Overlay')
114
+
115
+ # Create an annotation box
116
+ annot = ax.annotate("", xy=(0, 0), xytext=(20, 20),
117
+ textcoords="offset points",
118
+ bbox=dict(boxstyle="round", fc="w"),
119
+ arrowprops=dict(arrowstyle="->"))
120
+ annot.set_visible(False)
121
+
122
+ # Create a function to handle mouse clicks
123
+ def on_click(event):
124
+ if event.inaxes is not None:
125
+ # Get the coordinates of the click
126
+ click_point = Point(event.xdata, event.ydata)
127
+ # Check if the click is within any of the polygons
128
+ for idx, row in geojson_data.iterrows():
129
+ if row['geometry'].contains(click_point):
130
+ # Access the properties dictionarㅋ
131
+ # Extract species and confidence score
132
+ species_info = row['species']
133
+ confidence_score = row['Confidence_score']
134
+ # Display information about the clicked polygon
135
+ annot.xy = (event.xdata, event.ydata)
136
+ text = f"Polygon {idx}\n\nConfidence:\n{confidence_score}\n\nSpecies and their probability:\n{species_info}"
137
+ annot.set_text(text)
138
+ annot.set_visible(True)
139
+ fig.canvas.draw()
140
+ break
141
+
142
+ # Connect the click event to the handler function
143
+ cid = fig.canvas.mpl_connect('button_press_event', on_click)
144
+
145
+ figure = plt.figure()
146
+
147
+ return figure
148
+
149
+ #tif_file_name = "TreeCrownVectorDataset_761588_9673769_20_20_32720.tif"
150
+ #tif_input = "/Users/jonathanseele/ETH/Hackathons/EcoHackathon/WeCanopy/test/" + tif_file_name
151
+
152
+ # File paths
153
+ #tif_file_path = '/Users/taekim/ecohackathon/WeCanopy/test/TreeCrownVectorDataset_761588_9673769_20_20_32720.tif'
154
+ #geojson_file_path = '/Users/taekim/ecohackathon/WeCanopy/test/result.geojson'
155
+
156
+ # Read the TIF file
157
+
158
+
159
+ demo = gr.Interface(
160
+ fn=greet,
161
+ inputs=gr.File(type='filepath'),
162
+ outputs=gr.Plot(label="Tree Crowns")
163
+ )
164
+
165
+ demo.launch()
166
+
167
+
168
+
169
 
 
 
170