File size: 22,393 Bytes
4a3ad95
 
 
 
 
 
 
 
 
 
 
 
8f243be
4a3ad95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f243be
4a3ad95
 
 
 
 
 
 
8f243be
 
4a3ad95
 
8f243be
 
 
4a3ad95
 
 
 
8f243be
4a3ad95
 
 
 
 
 
8f243be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a3ad95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f243be
4a3ad95
 
 
 
 
 
8f243be
 
4a3ad95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f243be
 
 
 
 
 
4a3ad95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import torch.utils.data as data

import os
import re
import csv
import json
import torch
import tarfile
import pickle
import numpy as np
import pandas as pd
import random
from tqdm import tqdm
random.seed(2021)
from PIL import Image
from scipy import io as scio
from math import radians, cos, sin, asin, sqrt, pi
IMG_EXTENSIONS = ['.png', '.jpg', '.jpeg']
def get_spatial_info(latitude,longitude):
    if latitude and longitude:
        latitude = radians(latitude)
        longitude = radians(longitude)
        x = cos(latitude)*cos(longitude)
        y = cos(latitude)*sin(longitude)
        z = sin(latitude)
        return [x,y,z]
    else:
        return [0,0,0]
def get_temporal_info(date,miss_hour=False):
    try:
        if date:
            if miss_hour:
                pattern = re.compile(r'(\d*)-(\d*)-(\d*)', re.I)
            else:
                pattern = re.compile(r'(\d*)-(\d*)-(\d*) (\d*):(\d*):(\d*)', re.I)
            m = pattern.match(date.strip())

            if m:
                year = int(m.group(1))
                month = int(m.group(2))
                day = int(m.group(3))
                x_month = sin(2*pi*month/12)
                y_month = cos(2*pi*month/12) 
                if miss_hour:
                    x_hour = 0
                    y_hour = 0
                else:
                    hour = int(m.group(4))
                    x_hour = sin(2*pi*hour/24)
                    y_hour = cos(2*pi*hour/24)        
                return [x_month,y_month,x_hour,y_hour]
            else:
                return [0,0,0,0]
        else:
            return [0,0,0,0]
    except:
        return [0,0,0,0]
def load_file(root,dataset):
    if dataset == 'inaturelist2017':
        year_flag = 7
    elif dataset == 'inaturelist2018':
        year_flag = 8
    
    if dataset == 'inaturelist2018':
        with open(os.path.join(root,'categories.json'),'r') as f:
            map_label = json.load(f)
        map_2018 = dict()
        for _map in map_label:
            map_2018[int(_map['id'])] = _map['name'].strip().lower()
    with open(os.path.join(root,f'val201{year_flag}_locations.json'),'r') as f:
        val_location = json.load(f)
    val_id2meta = dict()
    for meta_info in val_location:
        val_id2meta[meta_info['id']] = meta_info
    with open(os.path.join(root,f'train201{year_flag}_locations.json'),'r') as f:
        train_location = json.load(f)
    train_id2meta = dict()
    for meta_info in train_location:
        train_id2meta[meta_info['id']] = meta_info
    with open(os.path.join(root,f'val201{year_flag}.json'),'r') as f:
        val_class_info = json.load(f)
    with open(os.path.join(root,f'train201{year_flag}.json'),'r') as f:
        train_class_info = json.load(f)
    
    if dataset == 'inaturelist2017':
        categories_2017 = [x['name'].strip().lower() for x in val_class_info['categories']]
        class_to_idx = {c: idx for idx, c in enumerate(categories_2017)}
        id2label = dict()
        for categorie in val_class_info['categories']:
            id2label[int(categorie['id'])] = categorie['name'].strip().lower()
    elif dataset == 'inaturelist2018':
        categories_2018 = [x['name'].strip().lower() for x in map_label]
        class_to_idx = {c: idx for idx, c in enumerate(categories_2018)}
        id2label = dict()
        for categorie in val_class_info['categories']:
            name = map_2018[int(categorie['name'])]
            id2label[int(categorie['id'])] = name.strip().lower()
    
    return train_class_info,train_id2meta,val_class_info,val_id2meta,class_to_idx,id2label
def find_images_and_targets_cub200(root,dataset,istrain=False,aux_info=False):
    imageid2label = {}
    with open(os.path.join(os.path.join(root,'CUB_200_2011'),'image_class_labels.txt'),'r') as f:
        for line in f:
            image_id,label = line.split()
            imageid2label[int(image_id)] = int(label)-1
    imageid2split = {}
    with open(os.path.join(os.path.join(root,'CUB_200_2011'),'train_test_split.txt'),'r') as f:
        for line in f:
            image_id,split = line.split()
            imageid2split[int(image_id)] = int(split)
    images_and_targets = []
    images_info = []
    images_root = os.path.join(os.path.join(root,'CUB_200_2011'),'images')
    bert_embedding_root = os.path.join(root,'bert_embedding_cub')
    text_root = os.path.join(root,'text_c10')
    with open(os.path.join(os.path.join(root,'CUB_200_2011'),'images.txt'),'r') as f:
        for line in f:
            image_id,file_name = line.split()
            file_path = os.path.join(images_root,file_name)
            target = imageid2label[int(image_id)]
            if aux_info:
                with open(os.path.join(bert_embedding_root,file_name.replace('.jpg','.pickle')),'rb') as f_bert:
                    bert_embedding = pickle.load(f_bert)
                    bert_embedding = bert_embedding['embedding_words']
                text_list = []
                with open(os.path.join(text_root,file_name.replace('.jpg','.txt')),'r') as f_text:
                    for line in f_text:
                        line = line.encode(encoding='UTF-8',errors='strict')
                        line = line.replace(b'\xef\xbf\xbd\xef\xbf\xbd',b' ')
                        line = line.decode('UTF-8','strict')
                        text_list.append(line)
            if istrain and imageid2split[int(image_id)]==1:
                if aux_info:
                    images_and_targets.append([file_path,target,bert_embedding])
                    images_info.append({'text_list':text_list})
                else:
                    images_and_targets.append([file_path,target])
            elif not istrain and imageid2split[int(image_id)]==0:
                if aux_info:
                    images_and_targets.append([file_path,target,bert_embedding])
                    images_info.append({'text_list':text_list})
                else:
                    images_and_targets.append([file_path,target])
    return images_and_targets,None,images_info
def find_images_and_targets_cub200_attribute(root,dataset,istrain=False,aux_info=False):
    imageid2label = {}
    with open(os.path.join(os.path.join(root,'CUB_200_2011'),'image_class_labels.txt'),'r') as f:
        for line in f:
            image_id,label = line.split()
            imageid2label[int(image_id)] = int(label)-1
    imageid2split = {}
    with open(os.path.join(os.path.join(root,'CUB_200_2011'),'train_test_split.txt'),'r') as f:
        for line in f:
            image_id,split = line.split()
            imageid2split[int(image_id)] = int(split)
    images_and_targets = []
    images_info = []
    images_root = os.path.join(os.path.join(root,'CUB_200_2011'),'images')
    attributes_root = os.path.join(os.path.join(root,'CUB_200_2011'),'attributes')
    imageid2attribute = {}
    with open(os.path.join(attributes_root,'image_attribute_labels.txt'),'r') as f:
        for line in f:
            if len(line.split())==6:
                image_id,attribute_id,is_present,_,_,_ = line.split()
            else:
                image_id,attribute_id,is_present,certainty_id,time = line.split()
            if int(image_id) not in imageid2attribute:
                imageid2attribute[int(image_id)] = [0 for i in range(312)]
            imageid2attribute[int(image_id)][int(attribute_id)-1] = int(is_present)
    with open(os.path.join(os.path.join(root,'CUB_200_2011'),'images.txt'),'r') as f:
        for line in f:
            image_id,file_name = line.split()
            file_path = os.path.join(images_root,file_name)
            target = imageid2label[int(image_id)]
            if aux_info:
                pass
            if istrain and imageid2split[int(image_id)]==1:
                if aux_info:
                    images_and_targets.append([file_path,target,imageid2attribute[int(image_id)]])
                    images_info.append({'attributes':imageid2attribute[int(image_id)]})
                else:
                    images_and_targets.append([file_path,target])
            elif not istrain and imageid2split[int(image_id)]==0:
                if aux_info:
                    images_and_targets.append([file_path,target,imageid2attribute[int(image_id)]])
                    images_info.append({'attributes':imageid2attribute[int(image_id)]})
                else:
                    images_and_targets.append([file_path,target])
    return images_and_targets,None,images_info
def find_images_and_targets_oxfordflower(root,dataset,istrain=False,aux_info=False):
    imagelabels = scio.loadmat(os.path.join(root,'imagelabels.mat'))
    imagelabels = imagelabels['labels'][0]
    train_val_split = scio.loadmat(os.path.join(root,'setid.mat'))
    train_data = train_val_split['trnid'][0].tolist()
    val_data = train_val_split['valid'][0].tolist()
    test_data = train_val_split['tstid'][0].tolist()
    images_and_targets = []
    images_info = []
    images_root = os.path.join(root,'jpg')
    bert_embedding_root = os.path.join(root,'bert_embedding_flower')
    if istrain:
        all_data = train_data+val_data
    else:
        all_data = test_data
    for data in all_data:
        file_path = os.path.join(images_root,f'image_{str(data).zfill(5)}.jpg')
        target = int(imagelabels[int(data)-1])-1
        if aux_info:
            with open(os.path.join(bert_embedding_root,f'image_{str(data).zfill(5)}.pickle'),'rb') as f_bert:
                bert_embedding = pickle.load(f_bert)
                bert_embedding = bert_embedding['embedding_full']
            images_and_targets.append([file_path,target,bert_embedding])
        else:
            images_and_targets.append([file_path,target])
    return images_and_targets,None,images_info
def find_images_and_targets_stanforddogs(root,dataset,istrain=False,aux_info=False):
    if istrain:
        anno_data = scio.loadmat(os.path.join(root,'train_list.mat'))
    else:
        anno_data = scio.loadmat(os.path.join(root,'test_list.mat'))
    images_and_targets = []
    images_info = []
    for file,label in zip(anno_data['file_list'],anno_data['labels']):
        file_path = os.path.join(os.path.join(root,'Images'),file[0][0])
        target = int(label[0])-1
        images_and_targets.append([file_path,target])
    return images_and_targets,None,images_info
def find_images_and_targets_nabirds(root,dataset,istrain=False,aux_info=False):
    root = os.path.join(root,'nabirds')
    image_paths = pd.read_csv(os.path.join(root,'images.txt'),sep=' ',names=['img_id','filepath'])
    image_class_labels = pd.read_csv(os.path.join(root,'image_class_labels.txt'),sep=' ',names=['img_id','target'])
    label_list = list(set(image_class_labels['target']))
    label_list = sorted(label_list)
    label_map = {k: i for i, k in enumerate(label_list)}
    train_test_split = pd.read_csv(os.path.join(root, 'train_test_split.txt'), sep=' ', names=['img_id', 'is_training_img'])
    data = image_paths.merge(image_class_labels, on='img_id')
    data = data.merge(train_test_split, on='img_id')
    if istrain:
        data = data[data.is_training_img == 1]
    else:
        data = data[data.is_training_img == 0]
    images_and_targets = []
    images_info = []
    for index,row in data.iterrows():
        file_path = os.path.join(os.path.join(root,'images'),row['filepath'])
        target = int(label_map[row['target']])
        images_and_targets.append([file_path,target])
    return images_and_targets,None,images_info
def find_images_and_targets_stanfordcars_v1(root,dataset,istrain=False,aux_info=False):
    if istrain:
        flag = 'train'
    else:
        flag = 'test'
    if istrain:
        anno_data = scio.loadmat(os.path.join(os.path.join(root,'devkit'),f'cars_{flag}_annos.mat'))
    else:
        anno_data = scio.loadmat(os.path.join(os.path.join(root,'devkit'),f'cars_{flag}_annos_withlabels.mat'))
    annotation = anno_data['annotations']
    images_and_targets = []
    images_info = []
    for r in annotation[0]:
        _,_,_,_,label,name = r
        file_path = os.path.join(os.path.join(root,f'cars_{flag}'),name[0])
        target = int(label[0][0])-1
        images_and_targets.append([file_path,target])
    return images_and_targets,None,images_info
def find_images_and_targets_stanfordcars(root,dataset,istrain=False,aux_info=False):
    anno_data = scio.loadmat(os.path.join(root,'cars_annos.mat'))
    annotation = anno_data['annotations']
    images_and_targets = []
    images_info = []
    for r in annotation[0]:
        name,_,_,_,_,label,split = r
        file_path = os.path.join(root,name[0])
        target = int(label[0][0])-1
        if istrain and int(split[0][0])==0:
            images_and_targets.append([file_path,target])
        elif not istrain and int(split[0][0])==1:
            images_and_targets.append([file_path,target])
    return images_and_targets,None,images_info        
def find_images_and_targets_aircraft(root,dataset,istrain=False,aux_info=False):
    file_root = os.path.join(root,'fgvc-aircraft-2013b','data')
    if istrain:
        data_file = os.path.join(file_root,'images_variant_trainval.txt')
    else:
        data_file = os.path.join(file_root,'images_variant_test.txt')
    classes = set()
    with open(data_file,'r') as f:
        for line in f:
            class_name = '_'.join(line.split()[1:])
            classes.add(class_name)
    classes = sorted(list(classes))
    class_to_idx = {name:ind for ind,name in enumerate(classes)}
    
    images_and_targets = []
    images_info = []
    with open(data_file,'r') as f:
        images_root = os.path.join(file_root,'images')
        for line in f:
            image_file = line.split()[0]
            class_name = '_'.join(line.split()[1:])
            file_path = os.path.join(images_root,f'{image_file}.jpg')
            target = class_to_idx[class_name]
            images_and_targets.append([file_path,target])
    return images_and_targets,class_to_idx,images_info
            
def find_images_and_targets_2017_2018(root,dataset,istrain=False,aux_info=False):
    train_class_info,train_id2meta,val_class_info,val_id2meta,class_to_idx,id2label = load_file(root,dataset)
    miss_hour = (dataset == 'inaturelist2017')

    class_info = train_class_info if istrain else val_class_info
    id2meta = train_id2meta if istrain else val_id2meta
    images_and_targets = []
    images_info = []
    if aux_info:
        temporal_info = []
        spatial_info = []
    for image,annotation in zip(class_info['images'],class_info['annotations']):
        file_path = os.path.join(root,image['file_name'])
        id_name = id2label[int(annotation['category_id'])]
        target = class_to_idx[id_name]
        image_id = image['id']
        date = id2meta[image_id]['date']
        latitude = id2meta[image_id]['lat']
        longitude = id2meta[image_id]['lon']
        location_uncertainty = id2meta[image_id]['loc_uncert']
        images_info.append({'date':date,
                'latitude':latitude,
                'longitude':longitude,
                'location_uncertainty':location_uncertainty,
                'target':target}) 
        if aux_info:
            temporal_info = get_temporal_info(date,miss_hour=miss_hour)
            spatial_info = get_spatial_info(latitude,longitude)
            images_and_targets.append((file_path,target,temporal_info+spatial_info))
        else:
            images_and_targets.append((file_path,target))
    return images_and_targets,class_to_idx,images_info
def find_images_and_targets(root,istrain=False,aux_info=False, integrity_check=False):
    if os.path.exists(os.path.join(root,'train.json')):
        with open(os.path.join(root,'train.json'),'r') as f:
            train_class_info = json.load(f)
    elif os.path.exists(os.path.join(root,'train_mini.json')):
        with open(os.path.join(root,'train_mini.json'),'r') as f:
            train_class_info = json.load(f)
    else:
        raise ValueError(f'{root}/train.json or {root}/train_mini.json doesn\'t exist')
    
    with open(os.path.join(root,'val.json'),'r') as f:
        val_class_info = json.load(f)

    categories = [x['name'].strip().lower() for x in val_class_info['categories']]
    class_to_idx = {c: idx for idx, c in enumerate(categories)}
    id2label = dict()
    for categorie in train_class_info['categories']:
        id2label[int(categorie['id'])] = categorie['name'].strip().lower()
    class_info = train_class_info if istrain else val_class_info
    image_subdir = "train" if istrain else "val"
    images_and_targets = []
    images_info = []
    if aux_info:
        temporal_info = []
        spatial_info = []

    ann2im = {}
    for ann in class_info['annotations']:
        ann2im[ann['id']] = ann['image_id']
    
    ims = {}
    for image in class_info['images']:
        ims[image['id']] = image

    print("Found", len(train_class_info['categories']))
    print("Loading images and targets, checking image integrity")

    for annotation in tqdm(class_info['annotations']):

        image = ims[annotation['image_id']]
        dir = train_class_info['categories'][annotation['category_id']]['image_dir_name']

        file_path = os.path.join(root,image_subdir,dir,image['file_name'])

        if not os.path.exists(file_path):

            continue 
        
            print(f"Download {file_path}")
            os.makedirs(os.path.dirname(file_path), exist_ok=True)
            import requests
            with open(file_path, 'wb') as fp:
                fp.write(requests.get(image['inaturalist_url']).content)

        if integrity_check:
            try:
                _ = np.array(Image.open(file_path))
            except:
                print(f"Failed to open {file_path}")
                continue

        id_name = id2label[int(annotation['category_id'])]
        target = class_to_idx[id_name]
        date = image['date']
        latitude = image['latitude']
        longitude = image['longitude']
        location_uncertainty = image['location_uncertainty']
        images_info.append({'date':date,
                'latitude':latitude,
                'longitude':longitude,
                'location_uncertainty':location_uncertainty,
                'target':target}) 
        if aux_info:
            temporal_info = get_temporal_info(date)
            spatial_info = get_spatial_info(latitude,longitude)
            images_and_targets.append((file_path,target,temporal_info+spatial_info))
        else:
            images_and_targets.append((file_path,target))
    return images_and_targets,class_to_idx,images_info


class DatasetMeta(data.Dataset):
    def __init__(
            self,
            root,
            load_bytes=False,
            transform=None,
            train=False,
            aux_info=False,
            dataset='coco_generic',
            class_ratio=1.0,
            per_sample=1.0):
        self.aux_info = aux_info
        self.dataset = dataset
        if dataset in ['inaturelist2021','inaturelist2021_mini']:
            images, class_to_idx,images_info = find_images_and_targets(root,train,aux_info)
        elif dataset in ['coco_generic']:
            images, class_to_idx,images_info = find_images_and_targets(root,train,aux_info)
        elif dataset in ['inaturelist2017','inaturelist2018']:
            images, class_to_idx,images_info = find_images_and_targets_2017_2018(root,dataset,train,aux_info)
        elif dataset == 'cub-200':
            images, class_to_idx,images_info = find_images_and_targets_cub200(root,dataset,train,aux_info)
        elif dataset == 'stanfordcars':
            images, class_to_idx,images_info = find_images_and_targets_stanfordcars(root,dataset,train)
        elif dataset == 'oxfordflower':
            images, class_to_idx,images_info = find_images_and_targets_oxfordflower(root,dataset,train,aux_info)
        elif dataset == 'stanforddogs':
            images,class_to_idx,images_info = find_images_and_targets_stanforddogs(root,dataset,train)
        elif dataset == 'nabirds':
            images,class_to_idx,images_info = find_images_and_targets_nabirds(root,dataset,train)
        elif dataset == 'aircraft':
            images,class_to_idx,images_info = find_images_and_targets_aircraft(root,dataset,train)
        if len(images) == 0:
            raise RuntimeError(f'Found 0 images in subfolders of {root}. '
                               f'Supported image extensions are {", ".join(IMG_EXTENSIONS)}')
        self.root = root
        self.samples = images
        self.imgs = self.samples  # torchvision ImageFolder compat
        self.class_to_idx = class_to_idx
        self.images_info = images_info
        self.load_bytes = load_bytes
        self.transform = transform
        

    def __getitem__(self, index):
        if self.aux_info:
            path, target,aux_info = self.samples[index]
        else:
            path, target = self.samples[index]

        try:
            img = open(path, 'rb').read() if self.load_bytes else Image.open(path).convert('RGB')
        except:
            img = Image.fromarray(np.zeros((224,224,3), dtype=np.uint8))

        if self.transform is not None:
            img = self.transform(img)
        if self.aux_info:
            if type(aux_info) is np.ndarray:
                select_index = np.random.randint(aux_info.shape[0])
                return img, target, aux_info[select_index,:]
            else:
                return img, target, np.asarray(aux_info).astype(np.float64)
        else:
            return img, target

    def __len__(self):
        return len(self.samples)
if __name__ == '__main__':
#     train_dataset = DatasetPre('./fgvc_previous','./fgvc_previous',train=True,aux_info=True)
#     import ipdb;ipdb.set_trace()
#     train_dataset = DatasetMeta('./nabirds',train=True,aux_info=False,dataset='nabirds')
#     find_images_and_targets_stanforddogs('./stanforddogs',None,istrain=True)
#     find_images_and_targets_oxfordflower('./oxfordflower',None,istrain=True)
    find_images_and_targets_ablation('./inaturelist2021',True,True,0.5,1.0)
#     find_images_and_targets_cub200('./cub-200','cub-200',True,True)
#     find_images_and_targets_aircraft('./aircraft','aircraft',True)
#     train_dataset = DatasetMeta('./aircraft',train=False,aux_info=False,dataset='aircraft')
    import ipdb;ipdb.set_trace()
#     find_images_and_targets_2017('')