atwang commited on
Commit
db66d62
β€’
1 Parent(s): 2fb2a7b

add code files

Browse files
Files changed (4) hide show
  1. README.md +7 -6
  2. app.py +122 -0
  3. prepare_index.py +105 -0
  4. requirements.txt +6 -0
README.md CHANGED
@@ -1,11 +1,12 @@
1
  ---
2
- title: Browser Backend
3
- emoji: πŸ”₯
4
- colorFrom: yellow
5
- colorTo: blue
6
- sdk: static
 
 
7
  pinned: false
8
- license: mit
9
  ---
10
 
11
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Bioscan Updated Ids
3
+ emoji: πŸ‘
4
+ colorFrom: pink
5
+ colorTo: gray
6
+ sdk: gradio
7
+ sdk_version: 5.5.0
8
+ app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import numpy as np
4
+ import h5py
5
+ import faiss
6
+ from PIL import Image
7
+ import io
8
+ import pickle
9
+ import random
10
+
11
+ def getRandID():
12
+ indx = random.randrange(0, 396503)
13
+ return indx_to_id_dict[indx], indx
14
+
15
+ def chooseImageIndex(indexType):
16
+ if (indexType == "FlatIP(default)"):
17
+ return image_index_IP
18
+ elif (indexType == "FlatL2"):
19
+ return image_index_L2
20
+ elif (indexType == "HNSWFlat"):
21
+ return image_index_HNSW
22
+ elif (indexType == "IVFFlat"):
23
+ return image_index_IVF
24
+ elif (indexType == "LSH"):
25
+ return image_index_LSH
26
+
27
+ def chooseDNAIndex(indexType):
28
+ if (indexType == "FlatIP(default)"):
29
+ return dna_index_IP
30
+ elif (indexType == "FlatL2"):
31
+ return dna_index_L2
32
+ elif (indexType == "HNSWFlat"):
33
+ return dna_index_HNSW
34
+ elif (indexType == "IVFFlat"):
35
+ return dna_index_IVF
36
+ elif (indexType == "LSH"):
37
+ return dna_index_LSH
38
+
39
+
40
+
41
+ def searchEmbeddings(id, mod1, mod2, indexType):
42
+ # variable and index initialization
43
+ dim = 768
44
+ count = 0
45
+ num_neighbors = 10
46
+
47
+ index = faiss.IndexFlatIP(dim)
48
+
49
+ # get index
50
+ if (mod2 == "Image"):
51
+ index = chooseImageIndex(indexType)
52
+ elif (mod2 == "DNA"):
53
+ index = chooseDNAIndex(indexType)
54
+
55
+
56
+ # search for query
57
+ if (mod1 == "Image"):
58
+ query = id_to_image_emb_dict[id]
59
+ elif (mod1 == "DNA"):
60
+ query = id_to_dna_emb_dict[id]
61
+ query = query.astype(np.float32)
62
+ D, I = index.search(query, num_neighbors)
63
+
64
+ id_list = []
65
+ i = 1
66
+ for indx in I[0]:
67
+ id = indx_to_id_dict[indx]
68
+ id_list.append(id)
69
+
70
+ return id_list
71
+
72
+ with gr.Blocks() as demo:
73
+
74
+ # for hf: change all file paths, indx_to_id_dict as well
75
+
76
+ # load indexes
77
+ image_index_IP = faiss.read_index("big_image_index_FlatIP.index")
78
+ image_index_L2 = faiss.read_index("big_image_index_FlatL2.index")
79
+ image_index_HNSW = faiss.read_index("big_image_index_HNSWFlat.index")
80
+ image_index_IVF = faiss.read_index("big_image_index_IVFFlat.index")
81
+ image_index_LSH = faiss.read_index("big_image_index_LSH.index")
82
+
83
+ dna_index_IP = faiss.read_index("big_dna_index_FlatIP.index")
84
+ dna_index_L2 = faiss.read_index("big_dna_index_FlatL2.index")
85
+ dna_index_HNSW = faiss.read_index("big_dna_index_HNSWFlat.index")
86
+ dna_index_IVF = faiss.read_index("big_dna_index_IVFFlat.index")
87
+ dna_index_LSH = faiss.read_index("big_dna_index_LSH.index")
88
+
89
+ with open("dataset_processid_list.pickle", "rb") as f:
90
+ dataset_processid_list = pickle.load(f)
91
+ with open("processid_to_index.pickle", "rb") as f:
92
+ processid_to_index = pickle.load(f)
93
+ with open("big_indx_to_id_dict.pickle", "rb") as f:
94
+ indx_to_id_dict = pickle.load(f)
95
+
96
+ # initialize both possible dicts
97
+ with open("big_id_to_image_emb_dict.pickle", "rb") as f:
98
+ id_to_image_emb_dict = pickle.load(f)
99
+ with open("big_id_to_dna_emb_dict.pickle", "rb") as f:
100
+ id_to_dna_emb_dict = pickle.load(f)
101
+
102
+ with gr.Column():
103
+ with gr.Row():
104
+ with gr.Column():
105
+ rand_id = gr.Textbox(label="Random ID:")
106
+ rand_id_indx = gr.Textbox(label="Index:")
107
+ id_btn = gr.Button("Get Random ID")
108
+ with gr.Column():
109
+ mod1 = gr.Radio(choices=["DNA", "Image"], label="Search From:")
110
+ mod2 = gr.Radio(choices=["DNA", "Image"], label="Search To:")
111
+
112
+ indexType = gr.Radio(choices=["FlatIP(default)", "FlatL2", "HNSWFlat", "IVFFlat", "LSH"], label="Index:", value="FlatIP(default)")
113
+ process_id = gr.Textbox(label="ID:", info="Enter a sample ID to search for")
114
+ process_id_list = gr.Textbox(label="Closest 10 matches:" )
115
+ search_btn = gr.Button("Search")
116
+ id_btn.click(fn=getRandID, inputs=[], outputs=[rand_id, rand_id_indx])
117
+
118
+ search_btn.click(fn=searchEmbeddings, inputs=[process_id, mod1, mod2, indexType],
119
+ outputs=[process_id_list])
120
+
121
+
122
+ demo.launch()
prepare_index.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+
3
+ import click
4
+ import faiss
5
+ import h5py
6
+
7
+ ALL_KEY_TYPES = ["dna", "image"]
8
+ ALL_INDEX_TYPES = ["IndexFlatIP", "IndexFlatL2", "IndexIVFFlat", "IndexHNSWFlat", "IndexLSH"]
9
+ EMBEDDING_SIZE = 768
10
+
11
+
12
+ def process(input: Path, output: Path, key_type: str, index_type: str):
13
+ # load embeddings
14
+ all_keys = h5py.File(input / "extracted_features_of_all_keys.hdf5", "r", libver="latest")[
15
+ f"encoded_{key_type}_feature"
16
+ ][:]
17
+ seen_test = h5py.File(input / "extracted_features_of_seen_test.hdf5", "r", libver="latest")[
18
+ f"encoded_{key_type}_feature"
19
+ ][:]
20
+ unseen_test = h5py.File(input / "extracted_features_of_unseen_test.hdf5", "r", libver="latest")[
21
+ f"encoded_{key_type}_feature"
22
+ ][:]
23
+ seen_val = h5py.File(input / "extracted_features_of_seen_val.hdf5", "r", libver="latest")[
24
+ f"encoded_{key_type}_feature"
25
+ ][:]
26
+ unseen_val = h5py.File(input / "extracted_features_of_unseen_val.hdf5", "r", libver="latest")[
27
+ f"encoded_{key_type}_feature"
28
+ ][:]
29
+
30
+ # FlatIP and FlatL2
31
+ if index_type == "IndexFlatIP":
32
+ test_index = faiss.IndexFlatIP(EMBEDDING_SIZE)
33
+ elif index_type == "IndexFlatL2":
34
+ test_index = faiss.IndexFlatL2(EMBEDDING_SIZE)
35
+ elif index_type == "IndexIVFFlat":
36
+ # IVFFlat
37
+ quantizer = faiss.IndexFlatIP(EMBEDDING_SIZE)
38
+ test_index = faiss.IndexIVFFlat(quantizer, EMBEDDING_SIZE, 128)
39
+ test_index.train(all_keys)
40
+ test_index.train(seen_test)
41
+ test_index.train(unseen_test)
42
+ test_index.train(seen_val)
43
+ test_index.train(unseen_val)
44
+ elif index_type == "IndexHNSWFlat":
45
+ # HNSW
46
+ # 16: connections for each vertex. efSearch: depth of search during search. efConstruction: depth of search during build
47
+ test_index = faiss.IndexHNSWFlat(EMBEDDING_SIZE, 16)
48
+ test_index.hnsw.efSearch = 32
49
+ test_index.hnsw.efConstruction = 64
50
+ elif index_type == "IndexLSH":
51
+ # LSH
52
+ test_index = faiss.IndexLSH(EMBEDDING_SIZE, EMBEDDING_SIZE * 2)
53
+ else:
54
+ raise ValueError(f"Index type {index_type} is not supported")
55
+
56
+ test_index.add(all_keys)
57
+ test_index.add(seen_test)
58
+ test_index.add(unseen_test)
59
+ test_index.add(seen_val)
60
+ test_index.add(unseen_val)
61
+
62
+ faiss.write_index(test_index, str(output / f"bioscan_5m_{key_type}_{index_type}.index"))
63
+ print("Saved index to", output / f"bioscan_5m_{key_type}_{index_type}.index")
64
+
65
+
66
+ @click.command()
67
+ @click.option(
68
+ "--input",
69
+ type=click.Path(path_type=Path),
70
+ default="bioscan-clip-scripts/extracted_features",
71
+ help="Path to extracted features",
72
+ )
73
+ @click.option(
74
+ "--output", type=click.Path(path_type=Path), default="bioscan-clip-scripts/index", help="Path to save the index"
75
+ )
76
+ @click.option(
77
+ "--key-type", "key_type", type=click.Choice(["all", *ALL_KEY_TYPES]), default="all", help="Type of key to use"
78
+ )
79
+ @click.option(
80
+ "--index-type",
81
+ "index_type",
82
+ type=click.Choice(["all", *ALL_INDEX_TYPES]),
83
+ default="all",
84
+ help="Type of index to use",
85
+ )
86
+ def main(input, output, key_type, index_type):
87
+ output.mkdir(parents=True, exist_ok=True)
88
+
89
+ if key_type == "all":
90
+ key_types = ALL_KEY_TYPES
91
+ else:
92
+ key_types = [key_type]
93
+
94
+ if index_type == "all":
95
+ index_types = ALL_INDEX_TYPES
96
+ else:
97
+ index_types = [index_type]
98
+
99
+ for key_type in key_types:
100
+ for index_type in index_types:
101
+ process(input, output, key_type, index_type)
102
+
103
+
104
+ if __name__ == "__main__":
105
+ main()
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ numpy~=1.26.0
3
+ faiss-cpu==1.8.0
4
+ h5py~=3.9.0
5
+ gradio==5.7.1
6
+ click==8.1.7