Spaces:
Running
Running
Commit
·
4fbbca3
1
Parent(s):
5ca6824
Update app.py
Browse files
app.py
CHANGED
@@ -77,7 +77,7 @@ def plot_acc_rate(rate_compare_results_df: pl.DataFrame, width: int = 1000, heig
|
|
77 |
|
78 |
|
79 |
def update_data(
|
80 |
-
dataset: str, benchmark: str, intermediate: bool, mim: bool, log_x: bool
|
81 |
) -> tuple[alt.LayerChart, pl.DataFrame]:
|
82 |
compare_results_df = pl.read_csv(f"results_{dataset}.csv")
|
83 |
if intermediate is False:
|
@@ -87,6 +87,9 @@ def update_data(
|
|
87 |
|
88 |
x_scale_type = "log" if log_x is True else "linear"
|
89 |
|
|
|
|
|
|
|
90 |
# Parameter count
|
91 |
if benchmark == "Parameters":
|
92 |
param_compare_results_df = compare_results_df.unique(subset=["Model name"]).sort(
|
@@ -122,6 +125,7 @@ def update_data(
|
|
122 |
for col in output_df.columns
|
123 |
]
|
124 |
)
|
|
|
125 |
return (chart, output_df.drop("Mistakes", "Samples"))
|
126 |
|
127 |
|
@@ -174,10 +178,20 @@ def app() -> None:
|
|
174 |
with gr.Column():
|
175 |
pass
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
plot = gr.Plot(container=False)
|
178 |
-
table = gr.Dataframe(show_search=
|
179 |
|
180 |
-
inputs = [dataset_dropdown, benchmark_dropdown, intermediate, mim, log_x]
|
181 |
outputs = [plot, table]
|
182 |
leaderboard.load(update_data, inputs=inputs, outputs=outputs)
|
183 |
|
@@ -186,6 +200,7 @@ def app() -> None:
|
|
186 |
intermediate.change(update_data, inputs=inputs, outputs=outputs)
|
187 |
mim.change(update_data, inputs=inputs, outputs=outputs)
|
188 |
log_x.change(update_data, inputs=inputs, outputs=outputs)
|
|
|
189 |
|
190 |
leaderboard.launch()
|
191 |
|
|
|
77 |
|
78 |
|
79 |
def update_data(
|
80 |
+
dataset: str, benchmark: str, intermediate: bool, mim: bool, log_x: bool, search_bar: str
|
81 |
) -> tuple[alt.LayerChart, pl.DataFrame]:
|
82 |
compare_results_df = pl.read_csv(f"results_{dataset}.csv")
|
83 |
if intermediate is False:
|
|
|
87 |
|
88 |
x_scale_type = "log" if log_x is True else "linear"
|
89 |
|
90 |
+
# Filter models
|
91 |
+
compare_results_df = compare_results_df.filter(pl.col("Model name").str.contains(search_bar))
|
92 |
+
|
93 |
# Parameter count
|
94 |
if benchmark == "Parameters":
|
95 |
param_compare_results_df = compare_results_df.unique(subset=["Model name"]).sort(
|
|
|
125 |
for col in output_df.columns
|
126 |
]
|
127 |
)
|
128 |
+
|
129 |
return (chart, output_df.drop("Mistakes", "Samples"))
|
130 |
|
131 |
|
|
|
178 |
with gr.Column():
|
179 |
pass
|
180 |
|
181 |
+
with gr.Row():
|
182 |
+
with gr.Column():
|
183 |
+
pass
|
184 |
+
|
185 |
+
with gr.Column(scale=2):
|
186 |
+
search_bar = gr.Textbox(label="Model Filter", placeholder="e.g. convnext, efficient|mobile")
|
187 |
+
|
188 |
+
with gr.Column():
|
189 |
+
pass
|
190 |
+
|
191 |
plot = gr.Plot(container=False)
|
192 |
+
table = gr.Dataframe(show_search="search")
|
193 |
|
194 |
+
inputs = [dataset_dropdown, benchmark_dropdown, intermediate, mim, log_x, search_bar]
|
195 |
outputs = [plot, table]
|
196 |
leaderboard.load(update_data, inputs=inputs, outputs=outputs)
|
197 |
|
|
|
200 |
intermediate.change(update_data, inputs=inputs, outputs=outputs)
|
201 |
mim.change(update_data, inputs=inputs, outputs=outputs)
|
202 |
log_x.change(update_data, inputs=inputs, outputs=outputs)
|
203 |
+
search_bar.change(update_data, inputs=inputs, outputs=outputs)
|
204 |
|
205 |
leaderboard.launch()
|
206 |
|