hassonofer commited on
Commit
c6773b7
·
1 Parent(s): f23ce5c

Update files

Browse files
Files changed (2) hide show
  1. app.py +6 -2
  2. results_il-common.csv +0 -0
app.py CHANGED
@@ -146,13 +146,15 @@ def plot_acc_rate(rate_compare_results_df: pl.DataFrame, width: int = 1000, heig
146
 
147
 
148
  def update_data(
149
- dataset: str, benchmark: str, intermediate: bool, mim: bool, log_x: bool, search_bar: str
150
  ) -> tuple[alt.LayerChart, pl.DataFrame]:
151
  compare_results_df = pl.read_csv(f"results_{dataset}.csv")
152
  if intermediate is False:
153
  compare_results_df = compare_results_df.filter(pl.col("Intermediate") == intermediate)
154
  if mim is False:
155
  compare_results_df = compare_results_df.filter(pl.col("MIM") == mim)
 
 
156
 
157
  x_scale_type = "log" if log_x is True else "linear"
158
 
@@ -269,6 +271,7 @@ def app() -> None:
269
  info="Show models that underwent intermediate training (extra data)",
270
  )
271
  mim = gr.Checkbox(label="MIM", value=True, info="Show models with Masked Image Modeling pre-training")
 
272
  log_x = gr.Checkbox(label="Log scale X-axis", value=False)
273
 
274
  with gr.Column():
@@ -287,7 +290,7 @@ def app() -> None:
287
  plot = gr.Plot(container=False)
288
  table = gr.Dataframe(show_search="search")
289
 
290
- inputs = [dataset_dropdown, benchmark_dropdown, intermediate, mim, log_x, search_bar]
291
  outputs = [plot, table]
292
  leaderboard.load(update_data, inputs=inputs, outputs=outputs)
293
 
@@ -295,6 +298,7 @@ def app() -> None:
295
  benchmark_dropdown.change(update_data, inputs=inputs, outputs=outputs)
296
  intermediate.change(update_data, inputs=inputs, outputs=outputs)
297
  mim.change(update_data, inputs=inputs, outputs=outputs)
 
298
  log_x.change(update_data, inputs=inputs, outputs=outputs)
299
  search_bar.change(update_data, inputs=inputs, outputs=outputs)
300
 
 
146
 
147
 
148
  def update_data(
149
+ dataset: str, benchmark: str, intermediate: bool, mim: bool, dist: bool, log_x: bool, search_bar: str
150
  ) -> tuple[alt.LayerChart, pl.DataFrame]:
151
  compare_results_df = pl.read_csv(f"results_{dataset}.csv")
152
  if intermediate is False:
153
  compare_results_df = compare_results_df.filter(pl.col("Intermediate") == intermediate)
154
  if mim is False:
155
  compare_results_df = compare_results_df.filter(pl.col("MIM") == mim)
156
+ if dist is False:
157
+ compare_results_df = compare_results_df.filter(pl.col("Distilled") == dist)
158
 
159
  x_scale_type = "log" if log_x is True else "linear"
160
 
 
271
  info="Show models that underwent intermediate training (extra data)",
272
  )
273
  mim = gr.Checkbox(label="MIM", value=True, info="Show models with Masked Image Modeling pre-training")
274
+ dist = gr.Checkbox(label="Distilled", value=True, info="Show distilled models")
275
  log_x = gr.Checkbox(label="Log scale X-axis", value=False)
276
 
277
  with gr.Column():
 
290
  plot = gr.Plot(container=False)
291
  table = gr.Dataframe(show_search="search")
292
 
293
+ inputs = [dataset_dropdown, benchmark_dropdown, intermediate, mim, dist, log_x, search_bar]
294
  outputs = [plot, table]
295
  leaderboard.load(update_data, inputs=inputs, outputs=outputs)
296
 
 
298
  benchmark_dropdown.change(update_data, inputs=inputs, outputs=outputs)
299
  intermediate.change(update_data, inputs=inputs, outputs=outputs)
300
  mim.change(update_data, inputs=inputs, outputs=outputs)
301
+ dist.change(update_data, inputs=inputs, outputs=outputs)
302
  log_x.change(update_data, inputs=inputs, outputs=outputs)
303
  search_bar.change(update_data, inputs=inputs, outputs=outputs)
304
 
results_il-common.csv CHANGED
The diff for this file is too large to render. See raw diff