Spaces:
Running
Running
Commit
·
df7618f
1
Parent(s):
d0807ff
Update files
Browse files- app.py +29 -16
- results_il-common.csv +0 -0
app.py
CHANGED
@@ -7,15 +7,16 @@ import gradio as gr
|
|
7 |
|
8 |
DATASETS = []
|
9 |
BENCHMARKS = {
|
10 |
-
# Name: (device, AMP, compile)
|
11 |
-
"Parameters": (None, None, None),
|
12 |
-
"GPU Memory": (None, None, None),
|
13 |
-
"CPU rate": ("cpu", False, False),
|
14 |
-
"CPU rate
|
15 |
-
"CPU rate
|
16 |
-
"
|
17 |
-
"CUDA rate
|
18 |
-
"CUDA rate
|
|
|
19 |
}
|
20 |
|
21 |
|
@@ -89,11 +90,13 @@ def plot_acc_rate(rate_compare_results_df: pl.DataFrame, width: int = 1000, heig
|
|
89 |
compiled = rate_compare_results_df["compile"][0]
|
90 |
batch_size = rate_compare_results_df["batch_size"][0]
|
91 |
amp = rate_compare_results_df["amp"][0]
|
|
|
92 |
else:
|
93 |
device = ""
|
94 |
compiled = ""
|
95 |
batch_size = ""
|
96 |
amp = ""
|
|
|
97 |
|
98 |
df = rate_compare_results_df.select(
|
99 |
"Model name",
|
@@ -126,8 +129,17 @@ def plot_acc_rate(rate_compare_results_df: pl.DataFrame, width: int = 1000, heig
|
|
126 |
)
|
127 |
|
128 |
chart = base + text + frontier
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
return chart.properties(
|
130 |
-
title=
|
|
|
|
|
|
|
131 |
width=width,
|
132 |
height=height,
|
133 |
).configure_scale(zero=False)
|
@@ -149,7 +161,7 @@ def update_data(
|
|
149 |
|
150 |
# Parameter count
|
151 |
if benchmark == "Parameters":
|
152 |
-
param_compare_results_df = compare_results_df.unique(subset=["Model name"]).sort(
|
153 |
"Parameters (M)", descending=False
|
154 |
)
|
155 |
param_compare_results_df = param_compare_results_df.with_columns(
|
@@ -168,7 +180,7 @@ def update_data(
|
|
168 |
# Peak memory
|
169 |
elif benchmark == "GPU Memory":
|
170 |
memory_compare_results_df = compare_results_df.drop_nulls(subset=["Peak GPU memory (MB)"])
|
171 |
-
memory_compare_results_df = memory_compare_results_df.unique(subset=["Model name"]).sort(
|
172 |
"Peak GPU memory (MB)", descending=False
|
173 |
)
|
174 |
memory_compare_results_df = memory_compare_results_df.with_columns(
|
@@ -183,10 +195,10 @@ def update_data(
|
|
183 |
|
184 |
# Rate
|
185 |
else:
|
186 |
-
(device, amp_enabled, compiled) = BENCHMARKS[benchmark]
|
187 |
df = compare_results_df.drop_nulls(subset=["ms / sample"])
|
188 |
-
df = df.filter(device=device, amp=amp_enabled, compile=compiled)
|
189 |
-
device_compare_results_df = df.unique(subset=["Model name"]).sort("ms / sample", descending=False)
|
190 |
device_compare_results_df = device_compare_results_df.drop("Peak GPU memory (MB)")
|
191 |
device_compare_results_df = device_compare_results_df.with_columns(
|
192 |
pl.col("Accuracy").cum_max().alias("Pareto frontier (ms)")
|
@@ -209,7 +221,7 @@ def update_data(
|
|
209 |
]
|
210 |
)
|
211 |
|
212 |
-
return (chart, output_df.drop("Mistakes", "Samples"))
|
213 |
|
214 |
|
215 |
def app() -> None:
|
@@ -226,6 +238,7 @@ def app() -> None:
|
|
226 |
|
227 |
* GPU: A5000 ADA Generation
|
228 |
* CPU: AMD Ryzen Threadripper PRO 7975WX
|
|
|
229 |
"""
|
230 |
)
|
231 |
|
|
|
7 |
|
8 |
DATASETS = []
|
9 |
BENCHMARKS = {
|
10 |
+
# Name: (device, AMP, compile, single thread)
|
11 |
+
"Parameters": (None, None, None, None),
|
12 |
+
"GPU Memory": (None, None, None, None),
|
13 |
+
"CPU rate": ("cpu", False, False, False),
|
14 |
+
"CPU rate single core": ("cpu", False, False, True),
|
15 |
+
"CPU rate with compile": ("cpu", False, True, False),
|
16 |
+
"CPU rate AMP with compile": ("cpu", True, True, False),
|
17 |
+
"CUDA rate": ("cuda", False, False, False),
|
18 |
+
"CUDA rate with compile": ("cuda", False, True, False),
|
19 |
+
"CUDA rate AMP with compile": ("cuda", True, True, False),
|
20 |
}
|
21 |
|
22 |
|
|
|
90 |
compiled = rate_compare_results_df["compile"][0]
|
91 |
batch_size = rate_compare_results_df["batch_size"][0]
|
92 |
amp = rate_compare_results_df["amp"][0]
|
93 |
+
single_thread = rate_compare_results_df["single_thread"][0]
|
94 |
else:
|
95 |
device = ""
|
96 |
compiled = ""
|
97 |
batch_size = ""
|
98 |
amp = ""
|
99 |
+
single_thread = False
|
100 |
|
101 |
df = rate_compare_results_df.select(
|
102 |
"Model name",
|
|
|
129 |
)
|
130 |
|
131 |
chart = base + text + frontier
|
132 |
+
|
133 |
+
if single_thread is True:
|
134 |
+
single_thread_title = " Single Core"
|
135 |
+
else:
|
136 |
+
single_thread_title = ""
|
137 |
+
|
138 |
return chart.properties(
|
139 |
+
title=(
|
140 |
+
f"Accuracy vs {device.upper()}{single_thread_title} Rate (compile={compiled}, "
|
141 |
+
f"batch size={batch_size}, amp={amp})"
|
142 |
+
),
|
143 |
width=width,
|
144 |
height=height,
|
145 |
).configure_scale(zero=False)
|
|
|
161 |
|
162 |
# Parameter count
|
163 |
if benchmark == "Parameters":
|
164 |
+
param_compare_results_df = compare_results_df.unique(subset=["Model name", "Resolution"]).sort(
|
165 |
"Parameters (M)", descending=False
|
166 |
)
|
167 |
param_compare_results_df = param_compare_results_df.with_columns(
|
|
|
180 |
# Peak memory
|
181 |
elif benchmark == "GPU Memory":
|
182 |
memory_compare_results_df = compare_results_df.drop_nulls(subset=["Peak GPU memory (MB)"])
|
183 |
+
memory_compare_results_df = memory_compare_results_df.unique(subset=["Model name", "Resolution"]).sort(
|
184 |
"Peak GPU memory (MB)", descending=False
|
185 |
)
|
186 |
memory_compare_results_df = memory_compare_results_df.with_columns(
|
|
|
195 |
|
196 |
# Rate
|
197 |
else:
|
198 |
+
(device, amp_enabled, compiled, single_thread) = BENCHMARKS[benchmark]
|
199 |
df = compare_results_df.drop_nulls(subset=["ms / sample"])
|
200 |
+
df = df.filter(device=device, amp=amp_enabled, compile=compiled, single_thread=single_thread)
|
201 |
+
device_compare_results_df = df.unique(subset=["Model name", "Resolution"]).sort("ms / sample", descending=False)
|
202 |
device_compare_results_df = device_compare_results_df.drop("Peak GPU memory (MB)")
|
203 |
device_compare_results_df = device_compare_results_df.with_columns(
|
204 |
pl.col("Accuracy").cum_max().alias("Pareto frontier (ms)")
|
|
|
221 |
]
|
222 |
)
|
223 |
|
224 |
+
return (chart, output_df.drop("Mistakes", "Samples", "torch_version"))
|
225 |
|
226 |
|
227 |
def app() -> None:
|
|
|
238 |
|
239 |
* GPU: A5000 ADA Generation
|
240 |
* CPU: AMD Ryzen Threadripper PRO 7975WX
|
241 |
+
* PyTorch version: 2.5.1+cu124
|
242 |
"""
|
243 |
)
|
244 |
|
results_il-common.csv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|