bishmoy commited on
Commit
6502f68
·
verified ·
1 Parent(s): 74426b7

refactor: Switch RAG source from static path to dynamic download

Browse files
.gradio/certificate.pem ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ -----BEGIN CERTIFICATE-----
2
+ MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
3
+ TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
4
+ cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
5
+ WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
6
+ ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
7
+ MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
8
+ h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
9
+ 0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
10
+ A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
11
+ T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
12
+ B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
13
+ B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
14
+ KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
15
+ OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
16
+ jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
17
+ qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
18
+ rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
19
+ HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
20
+ hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
21
+ ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
22
+ 3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
23
+ NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
24
+ ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
25
+ TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
26
+ jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
27
+ oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
28
+ 4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
29
+ mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
30
+ emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
31
+ -----END CERTIFICATE-----
__pycache__/utils.cpython-311.pyc ADDED
Binary file (4.28 kB). View file
 
app.py CHANGED
@@ -1,186 +1,219 @@
1
- import torch
2
- import transformers
3
  import gradio as gr
 
 
4
  from ragatouille import RAGPretrainedModel
5
- from huggingface_hub import InferenceClient
 
6
  import re
7
  from datetime import datetime
8
- import json
9
- import os
10
- import arxiv
11
- from utils import get_md_text_abstract, search_cleaner, get_arxiv_live_search
12
-
13
- retrieve_results = 10
14
- show_examples = False
15
- llm_models_to_choose = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.3', 'google/gemma-2-2b-it', 'None']
16
-
17
- token = os.getenv("HF_TOKEN")
18
-
19
- generate_kwargs = dict(
20
- temperature = None,
21
- max_new_tokens = 512,
22
- top_p = None,
23
- do_sample = False,
24
- )
 
 
 
 
 
 
25
 
26
- ## RAG Model
27
- RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")
 
 
 
28
 
 
29
  try:
30
- gr.Info("Setting up retriever, please wait...")
31
- rag_initial_output = RAG.search("what is Mistral?", k = 1)
32
- gr.Info("Retriever working successfully!")
33
-
34
- except:
35
- gr.Warning("Retriever not working!")
36
-
37
- ## Header
38
- mark_text = '# 🔍 Search Results\n'
39
- header_text = "# ArXiv CS RAG \n"
40
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  try:
42
- with open("README.md", "r") as f:
43
- mdfile = f.read()
44
- date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}'
45
- match = re.search(date_pattern, mdfile)
46
- date = match.group().split(': ')[1]
47
- formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y')
48
- header_text += f'Index Last Updated: {formatted_date}\n'
49
- index_info = f"Semantic Search - up to {formatted_date}"
50
- except:
51
- index_info = "Semantic Search"
52
-
53
- database_choices = [index_info,'Arxiv Search - Latest - (EXPERIMENTAL)']
54
-
55
- ## Arxiv API
56
- arx_client = arxiv.Client()
57
- is_arxiv_available = True
58
- check_arxiv_result = get_arxiv_live_search("What is Mistral?", arx_client, retrieve_results)
59
- if len(check_arxiv_result) == 0:
60
- is_arxiv_available = False
61
- print("Arxiv search not working, switching to default search ...")
62
- database_choices = [index_info]
63
-
64
-
65
-
66
- ## Show examples (disabled)
67
- if show_examples:
68
- with open("sample_outputs.json", "r") as f:
69
- sample_outputs = json.load(f)
70
- output_placeholder = sample_outputs['output_placeholder']
71
- md_text_initial = sample_outputs['search_placeholder']
72
-
73
- else:
74
- output_placeholder = None
75
- md_text_initial = ''
76
-
77
-
78
- def rag_cleaner(inp):
79
- rank = inp['rank']
80
- title = inp['document_metadata']['title']
81
- content = inp['content']
82
- date = inp['document_metadata']['_time']
83
- return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
 
85
- def get_prompt_text(question, context, formatted = True, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.3'):
86
- if formatted:
87
- sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates."
88
- message = f"Question: {question}"
89
-
90
- if 'mistralai' in llm_model_picked:
91
- return f"<s>" + f"[INST] {sys_instruction}" + f" {message}[/INST]"
92
-
93
- elif 'gemma' in llm_model_picked:
94
- return f"<bos><start_of_turn>user\n{sys_instruction}" + f" {message}<end_of_turn>\n"
95
-
96
- return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"
97
-
98
- def get_references(question, retriever, k = retrieve_results):
99
- rag_out = retriever.search(query=question, k=k)
100
- return rag_out
101
-
102
- def get_rag(message):
103
- return get_references(message, RAG)
104
-
105
- with gr.Blocks(theme = gr.themes.Soft()) as demo:
106
- header = gr.Markdown(header_text)
107
-
108
  with gr.Group():
109
- msg = gr.Textbox(label = 'Search', placeholder = 'What is Mistral?')
110
-
111
- with gr.Accordion("Advanced Settings", open=False):
112
- with gr.Row(equal_height = True):
113
- llm_model = gr.Dropdown(choices = llm_models_to_choose, value = 'mistralai/Mistral-7B-Instruct-v0.3', label = 'LLM Model')
114
- llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context")
115
- database_src = gr.Dropdown(choices = database_choices, value = index_info, label = 'Search Source')
116
- stream_results = gr.Checkbox(value = True, label = "Stream output", visible = False)
117
-
118
- output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder)
119
- input = gr.Textbox(show_label = False, visible = False)
120
- gr_md = gr.Markdown(mark_text + md_text_initial)
121
-
122
- def update_with_rag_md(message, llm_results_use = 5, database_choice = index_info, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.3'):
123
- prompt_text_from_data = ""
124
- database_to_use = database_choice
125
- if database_choice == index_info:
126
- rag_out = get_rag(message)
127
- else:
128
- arxiv_search_success = True
129
- try:
130
- rag_out = get_arxiv_live_search(message, arx_client, retrieve_results)
131
- if len(rag_out) == 0:
132
- arxiv_search_success = False
133
- except:
134
- arxiv_search_success = False
135
-
136
-
137
- if not arxiv_search_success:
138
- gr.Warning("Arxiv Search not working, switching to semantic search ...")
139
- rag_out = get_rag(message)
140
- database_to_use = index_info
141
-
142
- md_text_updated = mark_text
143
- for i in range(retrieve_results):
144
- rag_answer = rag_out[i]
145
- if i < llm_results_use:
146
- md_text_paper, prompt_text = get_md_text_abstract(rag_answer, source = database_to_use, return_prompt_formatting = True)
147
- prompt_text_from_data += f"{i+1}. {prompt_text}"
148
- else:
149
- md_text_paper = get_md_text_abstract(rag_answer, source = database_to_use)
150
- md_text_updated += md_text_paper
151
- prompt = get_prompt_text(message, prompt_text_from_data, llm_model_picked = llm_model_picked)
152
- return md_text_updated, prompt
153
-
154
- def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.3', stream_outputs = False):
155
- model_disabled_text = "LLM Model is disabled"
156
- output = ""
157
-
158
- if llm_model_picked == 'None':
159
- if stream_outputs:
160
- for out in model_disabled_text:
161
- output += out
162
- yield output
163
- return output
164
- else:
165
- return model_disabled_text
166
-
167
- client = InferenceClient(llm_model_picked, token = token)
168
- try:
169
- stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False)
170
-
171
- except:
172
- gr.Warning("LLM Inference rate limit reached, try again later!")
173
- return ""
174
-
175
- if stream_outputs:
176
- for response in stream:
177
- output += response
178
- yield output
179
- return output
180
- else:
181
- return stream
182
-
183
-
184
- msg.submit(update_with_rag_md, [msg, llm_results, database_src, llm_model], [gr_md, input]).success(ask_llm, [input, llm_model, stream_results], output_text)
185
-
186
- demo.queue().launch()
 
 
 
1
  import gradio as gr
2
+ import google.generativeai as genai
3
+ from google.generativeai.types import generation_types
4
  from ragatouille import RAGPretrainedModel
5
+ import arxiv
6
+ import os
7
  import re
8
  from datetime import datetime
9
+ from utils import get_md_text_abstract
10
+ from huggingface_hub import snapshot_download
11
+
12
+ # --- Core Configuration ---
13
+ hf_token = os.getenv("HF_TOKEN")
14
+ gemini_api_key = os.getenv("GEMINI_API_KEY")
15
+ RAG_SOURCE = os.getenv("RAG_SOURCE")
16
+ LOCAL_DATA_DIR = './rag_index_data'
17
+
18
+ LLM_MODELS_TO_CHOOSE = [
19
+ 'google/gemma-3-4b-it',
20
+ 'google/gemma-3-12b-it',
21
+ 'google/gemma-3-27b-it',
22
+ 'None'
23
+ ]
24
+ DEFAULT_LLM_MODEL = 'google/gemma-3-4b-it'
25
+ RETRIEVE_RESULTS = 20
26
+
27
+ # --- Gemini API Configuration ---
28
+ if gemini_api_key:
29
+ genai.configure(api_key=gemini_api_key)
30
+ else:
31
+ print("CRITICAL WARNING: GEMINI_API_KEY environment variable not set. The application will not function without it.")
32
 
33
+ GEMINI_GENERATION_CONFIG = genai.types.GenerationConfig(
34
+ temperature=0.2,
35
+ max_output_tokens=450,
36
+ top_p=0.95,
37
+ )
38
 
39
+ # --- RAG & Data Source Setup ---
40
  try:
41
+ gr.Info("Setting up the RAG retriever...")
42
+ # If the local index directory doesn't exist, download it from Hugging Face.
43
+ if not os.path.exists(LOCAL_DATA_DIR):
44
+ if not RAG_SOURCE or not hf_token:
45
+ raise ValueError("RAG index not found locally, and RAG_SOURCE or HF_TOKEN environment variables are not set. Cannot download index.")
46
+
47
+ snapshot_download(
48
+ repo_id=RAG_SOURCE,
49
+ repo_type="dataset", # Your index is stored as a dataset repo
50
+ token=hf_token,
51
+ local_dir=LOCAL_DATA_DIR
52
+ )
53
+ gr.Info("Index downloaded successfully.")
54
+ else:
55
+ gr.Info(f"Found existing local index at {LOCAL_DATA_DIR}.")
56
+
57
+ # Load the RAG model from the (now existing) local index path.
58
+ gr.Info(f'''Loading index from {os.path.join(LOCAL_DATA_DIR, "arxiv_colbert")}...''')
59
+ RAG = RAGPretrainedModel.from_index(os.path.join(LOCAL_DATA_DIR, "arxiv_colbert"))
60
+ RAG.search("Test query", k=1) # Warm-up query
61
+ gr.Info("Retriever loaded successfully!")
62
+
63
+ except Exception as e:
64
+ gr.Warning(f"Could not initialize the RAG retriever. The app may not function correctly. Error: {e}")
65
+ RAG = None
66
+
67
+
68
+ # --- UI Text and Metadata ---
69
+ MARKDOWN_SEARCH_RESULTS_HEADER = '# 🔍 Search Results\n'
70
+ APP_HEADER_TEXT = "# ArXiv CS RAG\n"
71
+ INDEX_INFO = "Semantic Search"
72
  try:
73
+ with open("README.md", "r") as f:
74
+ mdfile = f.read()
75
+ date_match = re.search(r'Index Last Updated : (\d{4}-\d{2}-\d{2})', mdfile)
76
+ if date_match:
77
+ date = date_match.group(1)
78
+ formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y')
79
+ APP_HEADER_TEXT += f'Index Last Updated: {formatted_date}\n'
80
+ INDEX_INFO = f"Semantic Search - up to {formatted_date}"
81
+ except Exception:
82
+ print("README.md not found or is invalid. Using default data source info.")
83
+
84
+ DATABASE_CHOICES = [INDEX_INFO, 'Arxiv Search - Latest - (EXPERIMENTAL)']
85
+ ARX_CLIENT = arxiv.Client()
86
+
87
+ # --- Helper Functions ---
88
+ def get_prompt_text(question, context):
89
+ """Formats the prompt for the Gemma 3 model."""
90
+ system_instruction = (
91
+ "Based on the provided scientific paper abstracts, provide a comprehensive answer of 6-7 lines. "
92
+ "Synthesize information from multiple sources if possible. Your answer must be grounded in the "
93
+ "details found in the abstracts. Cite the titles of the papers you use as sources in your answer."
94
+ )
95
+ message = f"Abstracts:\n{context}\n\nQuestion: {question}"
96
+ return f"{system_instruction}\n\n{message}"
97
+
98
+ def update_with_rag_md(message, llm_results_use, database_choice):
99
+ """Fetches documents, updates the UI, and creates the final prompt for the LLM."""
100
+ prompt_context = ""
101
+ rag_out = []
102
+ source_used = database_choice
103
+
104
+ try:
105
+ if database_choice == INDEX_INFO and RAG:
106
+ rag_out = RAG.search(message, k=RETRIEVE_RESULTS)
107
+ else:
108
+ rag_out = list(ARX_CLIENT.results(arxiv.Search(query=message, max_results=RETRIEVE_RESULTS, sort_by=arxiv.SortCriterion.Relevance)))
109
+ if not rag_out:
110
+ gr.Warning("Live Arxiv search returned no results. Falling back to semantic search.")
111
+ if RAG:
112
+ rag_out = RAG.search(message, k=RETRIEVE_RESULTS)
113
+ source_used = INDEX_INFO
114
+ except Exception as e:
115
+ gr.Warning(f"An error occurred during search: {e}. Falling back to semantic search.")
116
+ if RAG:
117
+ rag_out = RAG.search(message, k=RETRIEVE_RESULTS)
118
+ source_used = INDEX_INFO
119
+
120
+ md_text_updated = MARKDOWN_SEARCH_RESULTS_HEADER
121
+ for i, rag_answer in enumerate(rag_out):
122
+ md_text_paper, prompt_text = get_md_text_abstract(rag_answer, source=source_used, return_prompt_formatting=True)
123
+ if i < llm_results_use:
124
+ prompt_context += f"{i+1}. {prompt_text}\n"
125
+ md_text_updated += md_text_paper
126
+
127
+ final_prompt = get_prompt_text(message, prompt_context)
128
+ return md_text_updated, final_prompt
129
+
130
+ def ask_gemma_llm(prompt, llm_model_picked, stream_outputs):
131
+ """Sends a prompt to the Google Gemini API and streams the response."""
132
+ if not prompt or not prompt.strip():
133
+ yield "Error: The generated prompt is empty. Please try a different query."
134
+ return
135
+
136
+ if llm_model_picked == 'None':
137
+ yield "LLM Model is disabled."
138
+ return
139
+
140
+ if not gemini_api_key:
141
+ yield "Error: GEMINI_API_KEY is not configured. Cannot contact the LLM."
142
+ return
143
+
144
+ try:
145
+ safety_settings = [
146
+ {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_ONLY_HIGH"},
147
+ {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_ONLY_HIGH"},
148
+ {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_ONLY_HIGH"},
149
+ {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_ONLY_HIGH"},
150
+ ]
151
+
152
+ gemini_model_name = llm_model_picked.split('/')[-1]
153
+ model = genai.GenerativeModel(gemini_model_name)
154
+ response = model.generate_content(
155
+ prompt,
156
+ generation_config=GEMINI_GENERATION_CONFIG,
157
+ stream=stream_outputs,
158
+ safety_settings=safety_settings
159
+ )
160
+
161
+ if stream_outputs:
162
+ output = ""
163
+ for chunk in response:
164
+ try:
165
+ text = chunk.parts[0].text
166
+ output += text
167
+ yield output
168
+ except (IndexError, AttributeError):
169
+ # Ignore empty chunks, which can occur at the end of a stream.
170
+ pass
171
+ if not output:
172
+ yield "Model returned an empty or blocked stream. This may be due to the safety settings or the nature of the prompt."
173
+ else:
174
+ # Handle non-streaming responses.
175
+ try:
176
+ yield response.parts[0].text
177
+ except (IndexError, AttributeError):
178
+ reason = "UNKNOWN"
179
+ if response.prompt_feedback.block_reason:
180
+ reason = response.prompt_feedback.block_reason.name
181
+ elif response.candidates and not response.candidates[0].content.parts:
182
+ reason = response.candidates[0].finish_reason.name
183
+ yield f"Model returned an empty or blocked response."
184
+
185
+ except Exception as e:
186
+ error_message = f"An error occurred with the Gemini API: {e}"
187
+ print(error_message) # Server side log
188
+ gr.Warning("An error occurred with the Gemini API. Check the server logs for details.")
189
+ yield error_message
190
+
191
+ # --- Gradio User Interface ---
192
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
193
+ gr.Markdown(APP_HEADER_TEXT)
194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
  with gr.Group():
196
+ msg = gr.Textbox(label='Search', placeholder='e.g., What is Mixtral?')
197
+ with gr.Accordion("Advanced Settings", open=False):
198
+ llm_model = gr.Dropdown(choices=LLM_MODELS_TO_CHOOSE, value=DEFAULT_LLM_MODEL, label='LLM Model')
199
+ llm_results = gr.Slider(5, 20, value=10, step=1, label="Top n results as context")
200
+ database_src = gr.Dropdown(choices=DATABASE_CHOICES, value=INDEX_INFO, label='Search Source')
201
+ stream_results = gr.Checkbox(value=True, label="Stream output")
202
+
203
+ output_text = gr.Textbox(label='LLM Answer', placeholder="The model's answer will appear here...", interactive=False, lines=8)
204
+ input_prompt = gr.Textbox(visible=False)
205
+ gr_md = gr.Markdown(MARKDOWN_SEARCH_RESULTS_HEADER)
206
+
207
+ msg.submit(
208
+ fn=update_with_rag_md,
209
+ inputs=[msg, llm_results, database_src],
210
+ outputs=[gr_md, input_prompt]
211
+ ).then(
212
+ fn=ask_gemma_llm,
213
+ inputs=[input_prompt, llm_model, stream_results],
214
+ outputs=[output_text]
215
+ )
216
+
217
+ if __name__ == "__main__":
218
+ # Launch the app
219
+ demo.queue().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,4 +1,5 @@
1
- ragatouille
 
2
  huggingface_hub
3
  arxiv
4
  transformers[torch]<=4.49.0
 
1
+ ragatouille<0.0.10
2
+ google-generativeai
3
  huggingface_hub
4
  arxiv
5
  transformers[torch]<=4.49.0