|
import gradio as gr |
|
from transformers import pipeline |
|
from gtts import gTTS |
|
from pydub import AudioSegment |
|
from summarizer import summarize_file |
|
|
|
|
|
|
|
def text_to_speech(text): |
|
|
|
tts = gTTS(text=text, lang='en', tld='us', slow=False) |
|
tts.save('temp.mp3') |
|
|
|
|
|
audio = AudioSegment.from_file('temp.mp3') |
|
|
|
|
|
playback_speed = 1.20 |
|
audio = audio.speedup(playback_speed=playback_speed) |
|
|
|
|
|
final_filename = 'text_to_speech.mp3' |
|
audio.export(final_filename, format='mp3') |
|
|
|
return final_filename |
|
|
|
|
|
def process_files(): |
|
return (gr.update(interactive=True, |
|
elem_id='summary_button'), |
|
gr.update(interactive = True, elem_id = 'summarization_method') |
|
) |
|
|
|
|
|
|
|
def get_summarization_method(option): |
|
return option |
|
|
|
|
|
|
|
|
|
def text_to_audio(text, model_name="facebook/fastspeech2-en-ljspeech"): |
|
|
|
tts_pipeline = pipeline("text-to-speech", model=model_name) |
|
|
|
|
|
audio = tts_pipeline(text) |
|
|
|
|
|
audio_path = "output.wav" |
|
with open(audio_path, "wb") as file: |
|
file.write(audio["wav"]) |
|
|
|
return audio_path |
|
|
|
|
|
def generate_output(method, file): |
|
|
|
summary_text = summarize_file(method, file) |
|
audio_summary = text_to_speech(summary_text) |
|
|
|
return summary_text, audio_summary |