File size: 8,639 Bytes
f6e1dec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bf4004
 
 
 
 
 
 
 
 
 
f6e1dec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
from dataset_util import load_data, get_num_rows
import subnet_util
import datetime
import typing
import indexing_util
from io import BytesIO
FONT = """<link href="https://fonts.cdnfonts.com/css/intersect-c-brk" rel="stylesheet">"""
TITLE_FONT = """<link href="https://fonts.cdnfonts.com/css/promova" rel="stylesheet">"""
TITLE = """ <h1 align = "center" id = "space-title" class = "intersect"> D3 Subnet Leaderboard</h1> """
DESCRIPTION = """<marquee><h3 align= "center"> The D3 Subnet, standing for Decentralized Distributed Data Scraping subnet, plays a crucial role in the advancement of artificial intelligence by ensuring ample training data for all Bittensor AI networks. </h3></marquee>"""
IMAGE = """<a href="https://discord.com/channels/799672011265015819/1161764869280903240" target="_blank"><img src="https://cdn.discordapp.com/attachments/1204940599145267200/1227239850332131388/5CB42426-0E73-4D10-A66A-9E256C6A6183.png?ex=6627af2d&is=66153a2d&hm=02b9870618dd8e2e6bf62a0635f3cc8020221a0c7c2568138070f614e63a2068&" alt="D3 Subnet" style="margin: auto; width: 20%; border: 0;" /></a>"""

last_refresh = None
demo = gr.Blocks(css="""
                 .intersect {font-family: 'Intersect C BRK', sans-serif; font-size:40px} 
                 .promova {font-family: 'Promova', sans-serif; font-size:40px}
                 """)

twitter_text_dataset = load_data("bittensor-dataset/twitter-text-dataset")
twitter_text_num_rows = get_num_rows(twitter_text_dataset)
twitter_image_dataset = load_data("bittensor-dataset/twitter-image-dataset")
twitter_image_num_rows = get_num_rows(twitter_image_dataset)

tao_price = subnet_util.get_tao_price()
(subtensor, metagraph) = subnet_util.get_subtensor_and_metagraph()
last_refresh = datetime.datetime.now()
miners_data = subnet_util.get_subnet_data(subtensor, metagraph)
# url = "http://127.0.0.1:8001/"
# try:
#     response = requests.get(url)
#     response_body = response.json()
#     twitter_text_num_rows = response_body['twitter_text_rows']
#     twitter_image_num_rows = response_body['twitter_image_rows']
# except:
#     twitter_text_num_rows = 0
#     twitter_image_num_rows = 0
#     bt.logging.error("Could not connect to the API")


daily_indexing_data = indexing_util.get_all(indexing_util.daily_indexing)
daily_df = pd.DataFrame(daily_indexing_data, columns=['Date', 'Value'])
daily_df['Date'] = pd.to_datetime(daily_df['Date'].str.decode('utf-8'))
daily_df['Value'] = daily_df['Value'].astype(int)

hotkey_indexing_data = indexing_util.get_all(indexing_util.hotkey_indexing)
hotkey_df = pd.DataFrame(hotkey_indexing_data, columns=['Hotkey', 'Value'])
hotkey_df['Hotkey'] = hotkey_df['Hotkey'].str.decode('utf-8')
hotkey_df['Value'] = hotkey_df['Value'].astype(int)

hotkey_daily_indexing_data = indexing_util.get_all(indexing_util.hotkey_daily_indexing)
hotkey_daily_df = pd.DataFrame(hotkey_daily_indexing_data, columns=['Hotkey_Date', 'Value'])
hotkey_daily_df_= pd.DataFrame()
hotkey_daily_df_['Hotkey'] = hotkey_daily_df['Hotkey_Date'].str.decode('utf-8').str.split(' ').str[0]
hotkey_daily_df_['Date'] = hotkey_daily_df['Hotkey_Date'].str.decode('utf-8').str.split(' ').str[1]
hotkey_daily_df_['Value'] = hotkey_daily_df['Value'].astype(int)

print(hotkey_daily_df_)






def leaderboard_data(
    # show_stale: bool,
    # scores: typing.Dict[int, typing.Dict[str, typing.Optional[float | str]]],
    # competition_id: str,
):
    value = [
        [
            c.hotkey[0:8],
            c.uid,
            c.url,
            c.block,
        ]
        for c in miners_data
        # if c.incentive and c.url[0:8] == "https://"
    ]
    return value

with demo:
    gr.HTML(FONT)
    gr.HTML(TITLE_FONT)
    gr.HTML(TITLE)
    gr.HTML(IMAGE)
    gr.HTML(DESCRIPTION)

    with gr.Tabs():
        with gr.Accordion("Dataset Stats"):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.HTML(f"<h2 align = 'center'  style = 'font-size: 25px' >Current Size of Text Dataset: <span style = 'font-size: 30px; color: green;'>{twitter_text_num_rows}</span></h2>")
                with gr.Column(scale=1):
                    gr.HTML(f"<h2 align = 'center' style = 'font-size: 25px' >Current Size of Image Dataset: <span style = 'font-size: 30px; color: green;'>{twitter_image_num_rows}</span></h2>")
        with gr.Accordion("Subnet Stats"):
            gr.HTML(f"""<h2 align = 'center' class="promova" style = 'font-size: 35px;' > Miner Stats</h2>""")
            
            with gr.Row():
                with gr.Column(scale=1):
                    gr.BarPlot(
                        daily_df,
                        x="Date",
                        y="Value",
                        title="Daliy scraped data amount",
                        # color="Date",
                        tooltip=["Date", "Value"],
                        y_lim=[0, 1000],
                        x_title="Date",
                        y_title="Amount of data scraped",
                        height=500,
                        width=500,
                        scale=5,
                        color="Value",
                        color_legend_position="top",
                        # elem_classes="daily_scraped_data",
                    )
                with gr.Column(scale=1):
                    gr.BarPlot(
                        hotkey_df,
                        x="Hotkey",
                        y="Value",
                        title="Scraped data amount of each Miner",
                        # color="Date",
                        tooltip=["Hotkey", "Value"],
                        y_lim=[0, 1000],
                        x_title="Date",
                        y_title="Amount of data scraped",
                        height=500,
                        width=500,
                        scale=5,
                        color="Value",
                        x_label_angle=-30,
                        color_legend_position="top",
                        # elem_classes="daily_scraped_data",
                    )
            
            gr.ScatterPlot(
                hotkey_daily_df_,
                x="Date",
                y="Value",
                title="Daily scraped data amount of each Miner",
                # color="Date",
                tooltip=["Hotkey"],
                y_lim=[0, 1000],
                x_title="Date",
                y_title="Amount of data scraped",
                height=500,
                width=1000,
                scale=5,
                color="Hotkey",
                x_label_angle=-30,
                color_legend_position="top",
                # elem_classes="daily_scraped_data",
            )
        with gr.Tab(label="Miners Data"):
            class_denominator = sum(
                miners_data[i].incentive #TODO: emssion to incentive
                for i in range(0, min(10, len(miners_data)))
                if miners_data[i].incentive
            )
            class_values = {
                f"(uid={miners_data[i].uid}, hotkey={miners_data[i].hotkey[0:8]}) - {miners_data[i].url} · ${round(miners_data[i].emission * tao_price, 2):,}{round(miners_data[i].emission, 2):,})": miners_data[i].incentive / class_denominator
                for i in range(0, min(10, len(miners_data)))
                if miners_data[i].incentive
            }
            gr.Label(
                label="Top 10 Miners",
                value=class_values,
                num_top_classes=10,
            )
        # miner_table = gr.components.Dataframe(
        #     value=miners_data
        # )
        with gr.Accordion("Miner stats"):
            gr.HTML(
                f"""<h3>{last_refresh.strftime("refreshed at %H:%M on %Y-%m-%d")}</h3>"""
            )
            # with gr.Tabs():
            #     for entry in miners_data:
            #         name = f"uid={entry.uid} : commit={entry.commit[0:8]} : url={entry.url}"
            #         with gr.Tab(name):
            #             gr.Chatbot()
            leaderboard_table = gr.components.Dataframe(
                value=leaderboard_data(),
                headers = [
                    "Hotkey",
                    "UID",
                    "Url",
                    "Block",
                ],
                datatype=[
                    "markdown",
                    "number",
                    "markdown",
                    "number",

                ],
                elem_id="leaderboard_table",
                interactive=False,
                visible=True,

            )
demo.launch()