Spaces:
Configuration error
Configuration error
File size: 8,639 Bytes
f6e1dec 1bf4004 f6e1dec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
from dataset_util import load_data, get_num_rows
import subnet_util
import datetime
import typing
import indexing_util
from io import BytesIO
FONT = """<link href="https://fonts.cdnfonts.com/css/intersect-c-brk" rel="stylesheet">"""
TITLE_FONT = """<link href="https://fonts.cdnfonts.com/css/promova" rel="stylesheet">"""
TITLE = """ <h1 align = "center" id = "space-title" class = "intersect"> D3 Subnet Leaderboard</h1> """
DESCRIPTION = """<marquee><h3 align= "center"> The D3 Subnet, standing for Decentralized Distributed Data Scraping subnet, plays a crucial role in the advancement of artificial intelligence by ensuring ample training data for all Bittensor AI networks. </h3></marquee>"""
IMAGE = """<a href="https://discord.com/channels/799672011265015819/1161764869280903240" target="_blank"><img src="https://cdn.discordapp.com/attachments/1204940599145267200/1227239850332131388/5CB42426-0E73-4D10-A66A-9E256C6A6183.png?ex=6627af2d&is=66153a2d&hm=02b9870618dd8e2e6bf62a0635f3cc8020221a0c7c2568138070f614e63a2068&" alt="D3 Subnet" style="margin: auto; width: 20%; border: 0;" /></a>"""
last_refresh = None
demo = gr.Blocks(css="""
.intersect {font-family: 'Intersect C BRK', sans-serif; font-size:40px}
.promova {font-family: 'Promova', sans-serif; font-size:40px}
""")
twitter_text_dataset = load_data("bittensor-dataset/twitter-text-dataset")
twitter_text_num_rows = get_num_rows(twitter_text_dataset)
twitter_image_dataset = load_data("bittensor-dataset/twitter-image-dataset")
twitter_image_num_rows = get_num_rows(twitter_image_dataset)
tao_price = subnet_util.get_tao_price()
(subtensor, metagraph) = subnet_util.get_subtensor_and_metagraph()
last_refresh = datetime.datetime.now()
miners_data = subnet_util.get_subnet_data(subtensor, metagraph)
# url = "http://127.0.0.1:8001/"
# try:
# response = requests.get(url)
# response_body = response.json()
# twitter_text_num_rows = response_body['twitter_text_rows']
# twitter_image_num_rows = response_body['twitter_image_rows']
# except:
# twitter_text_num_rows = 0
# twitter_image_num_rows = 0
# bt.logging.error("Could not connect to the API")
daily_indexing_data = indexing_util.get_all(indexing_util.daily_indexing)
daily_df = pd.DataFrame(daily_indexing_data, columns=['Date', 'Value'])
daily_df['Date'] = pd.to_datetime(daily_df['Date'].str.decode('utf-8'))
daily_df['Value'] = daily_df['Value'].astype(int)
hotkey_indexing_data = indexing_util.get_all(indexing_util.hotkey_indexing)
hotkey_df = pd.DataFrame(hotkey_indexing_data, columns=['Hotkey', 'Value'])
hotkey_df['Hotkey'] = hotkey_df['Hotkey'].str.decode('utf-8')
hotkey_df['Value'] = hotkey_df['Value'].astype(int)
hotkey_daily_indexing_data = indexing_util.get_all(indexing_util.hotkey_daily_indexing)
hotkey_daily_df = pd.DataFrame(hotkey_daily_indexing_data, columns=['Hotkey_Date', 'Value'])
hotkey_daily_df_= pd.DataFrame()
hotkey_daily_df_['Hotkey'] = hotkey_daily_df['Hotkey_Date'].str.decode('utf-8').str.split(' ').str[0]
hotkey_daily_df_['Date'] = hotkey_daily_df['Hotkey_Date'].str.decode('utf-8').str.split(' ').str[1]
hotkey_daily_df_['Value'] = hotkey_daily_df['Value'].astype(int)
print(hotkey_daily_df_)
def leaderboard_data(
# show_stale: bool,
# scores: typing.Dict[int, typing.Dict[str, typing.Optional[float | str]]],
# competition_id: str,
):
value = [
[
c.hotkey[0:8],
c.uid,
c.url,
c.block,
]
for c in miners_data
# if c.incentive and c.url[0:8] == "https://"
]
return value
with demo:
gr.HTML(FONT)
gr.HTML(TITLE_FONT)
gr.HTML(TITLE)
gr.HTML(IMAGE)
gr.HTML(DESCRIPTION)
with gr.Tabs():
with gr.Accordion("Dataset Stats"):
with gr.Row():
with gr.Column(scale=1):
gr.HTML(f"<h2 align = 'center' style = 'font-size: 25px' >Current Size of Text Dataset: <span style = 'font-size: 30px; color: green;'>{twitter_text_num_rows}</span></h2>")
with gr.Column(scale=1):
gr.HTML(f"<h2 align = 'center' style = 'font-size: 25px' >Current Size of Image Dataset: <span style = 'font-size: 30px; color: green;'>{twitter_image_num_rows}</span></h2>")
with gr.Accordion("Subnet Stats"):
gr.HTML(f"""<h2 align = 'center' class="promova" style = 'font-size: 35px;' > Miner Stats</h2>""")
with gr.Row():
with gr.Column(scale=1):
gr.BarPlot(
daily_df,
x="Date",
y="Value",
title="Daliy scraped data amount",
# color="Date",
tooltip=["Date", "Value"],
y_lim=[0, 1000],
x_title="Date",
y_title="Amount of data scraped",
height=500,
width=500,
scale=5,
color="Value",
color_legend_position="top",
# elem_classes="daily_scraped_data",
)
with gr.Column(scale=1):
gr.BarPlot(
hotkey_df,
x="Hotkey",
y="Value",
title="Scraped data amount of each Miner",
# color="Date",
tooltip=["Hotkey", "Value"],
y_lim=[0, 1000],
x_title="Date",
y_title="Amount of data scraped",
height=500,
width=500,
scale=5,
color="Value",
x_label_angle=-30,
color_legend_position="top",
# elem_classes="daily_scraped_data",
)
gr.ScatterPlot(
hotkey_daily_df_,
x="Date",
y="Value",
title="Daily scraped data amount of each Miner",
# color="Date",
tooltip=["Hotkey"],
y_lim=[0, 1000],
x_title="Date",
y_title="Amount of data scraped",
height=500,
width=1000,
scale=5,
color="Hotkey",
x_label_angle=-30,
color_legend_position="top",
# elem_classes="daily_scraped_data",
)
with gr.Tab(label="Miners Data"):
class_denominator = sum(
miners_data[i].incentive #TODO: emssion to incentive
for i in range(0, min(10, len(miners_data)))
if miners_data[i].incentive
)
class_values = {
f"(uid={miners_data[i].uid}, hotkey={miners_data[i].hotkey[0:8]}) - {miners_data[i].url} · ${round(miners_data[i].emission * tao_price, 2):,} (τ{round(miners_data[i].emission, 2):,})": miners_data[i].incentive / class_denominator
for i in range(0, min(10, len(miners_data)))
if miners_data[i].incentive
}
gr.Label(
label="Top 10 Miners",
value=class_values,
num_top_classes=10,
)
# miner_table = gr.components.Dataframe(
# value=miners_data
# )
with gr.Accordion("Miner stats"):
gr.HTML(
f"""<h3>{last_refresh.strftime("refreshed at %H:%M on %Y-%m-%d")}</h3>"""
)
# with gr.Tabs():
# for entry in miners_data:
# name = f"uid={entry.uid} : commit={entry.commit[0:8]} : url={entry.url}"
# with gr.Tab(name):
# gr.Chatbot()
leaderboard_table = gr.components.Dataframe(
value=leaderboard_data(),
headers = [
"Hotkey",
"UID",
"Url",
"Block",
],
datatype=[
"markdown",
"number",
"markdown",
"number",
],
elem_id="leaderboard_table",
interactive=False,
visible=True,
)
demo.launch() |