Spaces:
Configuration error
Configuration error
File size: 3,957 Bytes
f6e1dec bb28562 f6e1dec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import bittensor as bt
from utils import functools, run_in_subprocess
from tqdm import tqdm
import concurrent.futures
import datetime
import typing
import time
import requests
from dataclasses import dataclass
SUBTENSOR = "finney"
NETUID = 10
METAGRAPH_RETRIES = 10
METAGRAPH_DELAY_SECS = 30
def get_subtensor_and_metagraph() -> typing.Tuple[bt.subtensor, bt.metagraph]:
for i in range(0, METAGRAPH_RETRIES):
try:
print("Connecting to subtensor...")
subtensor: bt.subtensor = bt.subtensor(SUBTENSOR)
print("Pulling metagraph...")
metagraph: bt.metagraph = subtensor.metagraph(NETUID, lite=False)
return subtensor, metagraph
except:
if i == METAGRAPH_RETRIES - 1:
raise
print(
f"Error connecting to subtensor or pulling metagraph, retry {i + 1} of {METAGRAPH_RETRIES} in {METAGRAPH_DELAY_SECS} seconds..."
)
time.sleep(METAGRAPH_DELAY_SECS)
raise RuntimeError()
def get_tao_price() -> float:
for i in range(0, METAGRAPH_RETRIES):
try:
return float(requests.get("https://api.mexc.com/api/v3/avgPrice?symbol=TAOUSDT").json()["price"])
except:
if i == METAGRAPH_RETRIES - 1:
raise
time.sleep(METAGRAPH_DELAY_SECS)
raise RuntimeError()
@dataclass
class MinerData:
uid: int
hotkey: str
block: int
url: str
incentive: float
emission: float
@classmethod
def from_compressed_str(
cls,
uid: int,
hotkey: str,
block: int,
cs:str,
incentive: float,
emission: float,
):
"""Returns an instance of this class from a compressed string representation"""
tokens = cs.split(" ")
return MinerData(
uid=uid,
hotkey=hotkey,
block=block,
url=tokens[0],
incentive=incentive,
emission=emission,
)
def get_subnet_data(
subtensor: bt.subtensor, metagraph: bt.metagraph
):
# Function to be executed in a thread
def fetch_data(uid):
hotkey = metagraph.hotkeys[uid]
try:
partial = functools.partial(
bt.extrinsics.serving.get_metadata, subtensor, metagraph.netuid, hotkey
)
metadata = run_in_subprocess(partial, 30)
except Exception as e:
return None
if not metadata:
return None
commitment = metadata["info"]["fields"][0]
hex_data = commitment[list(commitment.keys())[0]][2:]
chain_str = bytes.fromhex(hex_data).decode()
block = metadata["block"]
incentive = metagraph.incentive[uid].nan_to_num().item()
emission = (
metagraph.emission[uid].nan_to_num().item() * 20
) # convert to daily TAO
try:
model_data = MinerData.from_compressed_str(
uid, hotkey, block, chain_str, incentive, emission
)
except Exception as e:
print(f"Error parsing model data for uid {uid}: {e}")
return None
print(model_data)
return model_data
# Use ThreadPoolExecutor to fetch data in parallel
results = []
with concurrent.futures.ThreadPoolExecutor() as executor:
# Prepare the list of futures
futures = [executor.submit(fetch_data, uid) for uid in metagraph.uids.tolist()]
for future in tqdm(
concurrent.futures.as_completed(futures),
desc="Metadata for hotkeys",
total=len(futures),
):
result = future.result()
if result and result.url[0] != "{":
results.append(result)
return results
if __name__ == "__main__":
(subtensor, metagraph) = get_subtensor_and_metagraph()
data = get_subnet_data(subtensor, metagraph)
print(data)
|