|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import pandas as pd |
|
|
|
import pyarrow as pa |
|
from pyarrow.tests.util import rands |
|
|
|
|
|
class PandasConversionsBase(object): |
|
def setup(self, n, dtype): |
|
if dtype == 'float64_nans': |
|
arr = np.arange(n).astype('float64') |
|
arr[arr % 10 == 0] = np.nan |
|
else: |
|
arr = np.arange(n).astype(dtype) |
|
self.data = pd.DataFrame({'column': arr}) |
|
|
|
|
|
class PandasConversionsToArrow(PandasConversionsBase): |
|
param_names = ('size', 'dtype') |
|
params = ((10, 10 ** 6), ('int64', 'float64', 'float64_nans', 'str')) |
|
|
|
def time_from_series(self, n, dtype): |
|
pa.Table.from_pandas(self.data) |
|
|
|
|
|
class PandasConversionsFromArrow(PandasConversionsBase): |
|
param_names = ('size', 'dtype') |
|
params = ((10, 10 ** 6), ('int64', 'float64', 'float64_nans', 'str')) |
|
|
|
def setup(self, n, dtype): |
|
super(PandasConversionsFromArrow, self).setup(n, dtype) |
|
self.arrow_data = pa.Table.from_pandas(self.data) |
|
|
|
def time_to_series(self, n, dtype): |
|
self.arrow_data.to_pandas() |
|
|
|
|
|
class ToPandasStrings(object): |
|
|
|
param_names = ('uniqueness', 'total') |
|
params = ((0.001, 0.01, 0.1, 0.5), (1000000,)) |
|
string_length = 25 |
|
|
|
def setup(self, uniqueness, total): |
|
nunique = int(total * uniqueness) |
|
unique_values = [rands(self.string_length) for i in range(nunique)] |
|
values = unique_values * (total // nunique) |
|
self.arr = pa.array(values, type=pa.string()) |
|
self.table = pa.Table.from_arrays([self.arr], ['f0']) |
|
|
|
def time_to_pandas_dedup(self, *args): |
|
self.arr.to_pandas() |
|
|
|
def time_to_pandas_no_dedup(self, *args): |
|
self.arr.to_pandas(deduplicate_objects=False) |
|
|
|
|
|
class SerializeDeserializePandas(object): |
|
|
|
def setup(self): |
|
|
|
n = 10000000 |
|
self.df = pd.DataFrame({'data': np.random.randn(n)}) |
|
self.serialized = pa.serialize_pandas(self.df) |
|
|
|
def time_serialize_pandas(self): |
|
pa.serialize_pandas(self.df) |
|
|
|
def time_deserialize_pandas(self): |
|
pa.deserialize_pandas(self.serialized) |
|
|
|
|
|
class TableFromPandasMicroperformance(object): |
|
|
|
|
|
def setup(self): |
|
ser = pd.Series(range(10000)) |
|
df = pd.DataFrame({col: ser.copy(deep=True) for col in range(100)}) |
|
|
|
self.df = df.astype({col: str for col in range(50)}) |
|
|
|
def time_Table_from_pandas(self): |
|
for _ in range(50): |
|
pa.Table.from_pandas(self.df, nthreads=1) |
|
|