Spaces:
Running
Running
File size: 8,938 Bytes
bdb1da0 7e9bcc1 bdb1da0 7e9bcc1 bdb1da0 7e9bcc1 bdb1da0 7e9bcc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import gradio as gr
import os
import time
import pdfplumber
from dotenv import load_dotenv
import torch
from transformers import (
BertJapaneseTokenizer,
BertModel,
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
BitsAndBytesConfig
)
from langchain_community.vectorstores import FAISS # 修正
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFacePipeline # 修正
from langchain_community.embeddings import HuggingFaceEmbeddings # 修正
from langchain_huggingface import HuggingFaceEndpoint
# Pydanticの警告を無視
import warnings
warnings.filterwarnings(
"ignore",
message=r"Field \"model_name\" in HuggingFaceInferenceAPIEmbeddings has conflict with protected namespace"
)
load_dotenv()
list_llm = [
"meta-llama/Meta-Llama-3-8B-Instruct",
"rinna/llama-3-youko-8b",
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# 日本語PDFのテキスト抽出
def extract_text_from_pdf(file_path):
with pdfplumber.open(file_path) as pdf:
pages = [page.extract_text() for page in pdf.pages]
return " ".join(pages)
# モデルとトークナイザの初期化
tokenizer_bert = BertJapaneseTokenizer.from_pretrained(
'cl-tohoku/bert-base-japanese',
clean_up_tokenization_spaces=True
)
model_bert = BertModel.from_pretrained('cl-tohoku/bert-base-japanese')
def split_text_simple(text, chunk_size=1024):
return [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
def create_db(splits):
embeddings = HuggingFaceEmbeddings(
model_name='sonoisa/sentence-bert-base-ja-mean-tokens'
)
vectordb = FAISS.from_texts(splits, embeddings)
return vectordb
def initialize_llmchain(
llm_model,
temperature,
max_tokens,
top_k,
vector_db,
retries=5,
delay=5
):
attempt = 0
while attempt < retries:
try:
# ローカルモデルの場合
if "rinna" in llm_model.lower():
# デバイスの自動検出
if torch.cuda.is_available():
device_map = "auto"
torch_dtype = torch.float16
# GPUがある場合は量子化を使用
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
model = AutoModelForCausalLM.from_pretrained(
llm_model,
device_map=device_map,
quantization_config=quantization_config
)
else:
device_map = {"": "cpu"}
torch_dtype = torch.float32
# CPUの場合は量子化を使用せずにモデルをロード
model = AutoModelForCausalLM.from_pretrained(
llm_model,
device_map=device_map,
torch_dtype=torch_dtype
)
tokenizer = AutoTokenizer.from_pretrained(llm_model, use_fast=False)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=max_tokens,
temperature=temperature
)
llm = HuggingFacePipeline(pipeline=pipe)
# エンドポイントモデルの場合
elif "meta-llama" in llm_model.lower() or "mistralai" in llm_model.lower():
# パラメータを直接指定
llm = HuggingFaceEndpoint(
endpoint_url=f"https://api-inference.huggingface.co/models/{llm_model}",
huggingfacehub_api_token=os.getenv("HF_TOKEN"),
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k
)
else:
# その他のモデルの場合(必要に応じて追加)
raise Exception(f"Unsupported model: {llm_model}")
# 共通の処理
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
memory=memory,
return_source_documents=True,
verbose=False
)
return qa_chain
except Exception as e:
if "Could not authenticate with huggingface_hub" in str(e):
time.sleep(delay)
attempt += 1
else:
raise Exception(f"Error initializing QA chain: {str(e)}")
raise Exception(f"Failed to initialize after {retries} attempts")
def process_pdf(file):
try:
if file is None:
return None, "Please upload a PDF file."
text = extract_text_from_pdf(file.name)
splits = split_text_simple(text)
vdb = create_db(splits)
return vdb, "PDF processed and vector database created."
except Exception as e:
return None, f"Error processing PDF: {str(e)}"
def initialize_qa_chain(
llm_index,
temperature,
max_tokens,
top_k,
vector_db
):
try:
if vector_db is None:
return None, "Please process a PDF first."
llm_name = list_llm[llm_index]
chain = initialize_llmchain(
llm_name,
temperature,
max_tokens,
top_k,
vector_db
)
return chain, "QA Chatbot initialized with selected LLM."
except Exception as e:
return None, f"Error initializing QA chain: {str(e)}"
def update_chat(msg, history, chain):
try:
if chain is None:
return history + [("User", msg), ("Assistant", "Please initialize the QA Chatbot first.")]
response = chain({"question": msg, "chat_history": history})
return history + [("User", msg), ("Assistant", response['answer'])]
except Exception as e:
return history + [("User", msg), ("Assistant", f"Error: {str(e)}")]
def demo():
with gr.Blocks() as demo:
vector_db = gr.State(value=None)
qa_chain = gr.State(value=None)
with gr.Tab("Step 1 - Upload and Process"):
with gr.Row():
document = gr.File(label="Upload your Japanese PDF document", file_types=["pdf"])
with gr.Row():
process_btn = gr.Button("Process PDF")
process_output = gr.Textbox(label="Processing Output")
with gr.Tab("Step 2 - Initialize QA Chatbot"):
with gr.Row():
llm_btn = gr.Radio(list_llm_simple, label="Select LLM Model", type="index")
llm_temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, label="Temperature", value=0.7)
max_tokens = gr.Slider(minimum=128, maximum=2048, step=128, label="Max Tokens", value=1024)
top_k = gr.Slider(minimum=1, maximum=10, step=1, label="Top K", value=3)
with gr.Row():
init_qa_btn = gr.Button("Initialize QA Chatbot")
init_output = gr.Textbox(label="Initialization Output")
with gr.Tab("Step 3 - Chat with your Document"):
chatbot = gr.Chatbot()
message = gr.Textbox(label="Ask a question")
with gr.Row():
send_btn = gr.Button("Send")
clear_chat_btn = gr.Button("Clear Chat")
reset_all_btn = gr.Button("Reset All")
process_btn.click(
process_pdf,
inputs=[document],
outputs=[vector_db, process_output]
)
init_qa_btn.click(
initialize_qa_chain,
inputs=[llm_btn, llm_temperature, max_tokens, top_k, vector_db],
outputs=[qa_chain, init_output]
)
send_btn.click(
update_chat,
inputs=[message, chatbot, qa_chain],
outputs=[chatbot]
)
# Clear Chatボタン:チャット履歴のみをクリア
clear_chat_btn.click(
lambda: None,
outputs=[chatbot]
)
# Reset Allボタン:チャット履歴、PDFデータ、チャットボットの状態をすべてクリア
reset_all_btn.click(
lambda: (None, None, None),
outputs=[chatbot, vector_db, qa_chain]
)
return demo
if __name__ == "__main__":
demo().launch()
|