File size: 3,099 Bytes
4e0c974 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import aiohttp
import asyncio,pprint
import google.generativeai as palm
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain import PromptTemplate
import os
PALM_API = ''
API_KEY=os.environ.get("PALM_API",PALM_API)
palm.configure(api_key=API_KEY)
text_splitter = RecursiveCharacterTextSplitter(separators=["\n\n", "\n","."], chunk_size=40_000, chunk_overlap=500)
map_prompt = """
Write a verbose summary like a masters student of the following:
"{text}"
CONCISE SUMMARY:
"""
combine_prompt = """
Write a concise summary of the following text delimited by triple backquotes.
Return your response in a detailed verbose paragraph which covers the text. Make it as insightful to the reader as possible, write like a masters student.
```{text}```
SUMMARY:
"""
def count_tokens(text):
return palm.count_message_tokens(prompt=text)['token_count']
async def PalmTextModel(text,candidates=1):
url = f"https://generativelanguage.googleapis.com/v1beta2/models/text-bison-001:generateText?key={API_KEY}"
headers = {
"Content-Type": "application/json",
}
data = {
"prompt": {
"text": text
},
"temperature": 0.95,
"top_k": 100,
"top_p": 0.95,
"candidate_count": candidates,
"max_output_tokens": 1024,
"stop_sequences": ["</output>"],
"safety_settings": [
{"category": "HARM_CATEGORY_DEROGATORY", "threshold": 4},
{"category": "HARM_CATEGORY_TOXICITY", "threshold": 4},
{"category": "HARM_CATEGORY_VIOLENCE", "threshold": 4},
{"category": "HARM_CATEGORY_SEXUAL", "threshold": 4},
{"category": "HARM_CATEGORY_MEDICAL", "threshold": 4},
{"category": "HARM_CATEGORY_DANGEROUS", "threshold": 4},
],
}
async with aiohttp.ClientSession() as session:
async with session.post(url, json=data, headers=headers) as response:
if response.status == 200:
result = await response.json()
# print(result)
if candidates>1:
temp = [candidate["output"] for candidate in result["candidates"]]
return temp
temp = result["candidates"][0]["output"]
return temp
else:
print(f"Error: {response.status}\n{await response.text()}")
async def Summarizer(essay):
docs = text_splitter.create_documents([essay])
#for 1 large document
if len(docs) == 1:
tasks = [PalmTextModel(combine_prompt.format(text=doc.page_content)) for doc in docs]
# Gather and execute the tasks concurrently
responses = await asyncio.gather(*tasks)
ans=" ".join(responses)
return ans
tasks = [PalmTextModel(map_prompt.format(text=doc.page_content)) for doc in docs]
# Gather and execute the tasks concurrently
responses = await asyncio.gather(*tasks)
main=" ".join(responses)
ans=await PalmTextModel(combine_prompt.format(text=main),candidates=1)
return ans
|