Update App/Embedding/utils/Initialize.py
Browse files
App/Embedding/utils/Initialize.py
CHANGED
@@ -20,8 +20,8 @@ async def delete_documents(task_id):
|
|
20 |
embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
21 |
|
22 |
|
23 |
-
pinecone.Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
|
24 |
-
vector_index =
|
25 |
docsearch = Pinecone.from_existing_index(index_name, embeddings)
|
26 |
|
27 |
docsearch.delete(
|
@@ -64,8 +64,8 @@ def search(query: str, task_id: str):
|
|
64 |
embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
65 |
|
66 |
|
67 |
-
pinecone.Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
|
68 |
-
vector_index =
|
69 |
docsearch = Pinecone.from_existing_index(index_name, embeddings)
|
70 |
|
71 |
filtering_conditions = {
|
@@ -90,8 +90,8 @@ def encode(temp: list[Document]):
|
|
90 |
embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
91 |
|
92 |
|
93 |
-
pinecone.Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
|
94 |
-
vector_index =
|
95 |
docsearch = Pinecone.from_existing_index(index_name, embeddings)
|
96 |
docsearch.add_documents(temp)
|
97 |
# return embeddings.embed_documents(texts = [d.page_content for d in temp])
|
|
|
20 |
embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
21 |
|
22 |
|
23 |
+
pc=pinecone.Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
|
24 |
+
vector_index = pc.Index(index_name=index_name)
|
25 |
docsearch = Pinecone.from_existing_index(index_name, embeddings)
|
26 |
|
27 |
docsearch.delete(
|
|
|
64 |
embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
65 |
|
66 |
|
67 |
+
pc=pinecone.Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
|
68 |
+
vector_index = pc.Index(index_name=index_name)
|
69 |
docsearch = Pinecone.from_existing_index(index_name, embeddings)
|
70 |
|
71 |
filtering_conditions = {
|
|
|
90 |
embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
91 |
|
92 |
|
93 |
+
pc=pinecone.Pinecone(api_key=PINECONE_API_KEY, environment=PINECONE_ENV)
|
94 |
+
vector_index = pc.Index(index_name=index_name)
|
95 |
docsearch = Pinecone.from_existing_index(index_name, embeddings)
|
96 |
docsearch.add_documents(temp)
|
97 |
# return embeddings.embed_documents(texts = [d.page_content for d in temp])
|