Mbonea commited on
Commit
2edeee0
·
1 Parent(s): 2a4cafb

Rag is ready?

Browse files
Files changed (1) hide show
  1. App/Chat/utils/RAG.py +58 -25
App/Chat/utils/RAG.py CHANGED
@@ -1,32 +1,65 @@
1
  import aiohttp
2
- import asyncio,pprint
 
 
3
  import google.generativeai as palm
4
- from langchain.chains.question_answering import load_qa_chain
5
- from langchain.llms import GooglePalm
6
- from langchain.text_splitter import RecursiveCharacterTextSplitter
7
- from langchain import PromptTemplate
8
- import os
9
- PALM_API = ''
10
- API_KEY=os.environ.get("PALM_API",PALM_API)
11
  palm.configure(api_key=API_KEY)
 
 
 
 
 
 
 
 
 
 
 
12
 
 
 
 
 
 
 
 
 
 
13
 
14
- def count_tokens(text):
15
- return palm.count_message_tokens(prompt=text)['token_count']
16
- llm = GooglePalm(
17
- google_api_key=API_KEY, **{ "safety_settings": [
18
- {"category": "HARM_CATEGORY_DEROGATORY", "threshold": 4},
19
- {"category": "HARM_CATEGORY_TOXICITY", "threshold": 4},
20
- {"category": "HARM_CATEGORY_VIOLENCE", "threshold": 4},
21
- {"category": "HARM_CATEGORY_SEXUAL", "threshold": 4},
22
- {"category": "HARM_CATEGORY_MEDICAL", "threshold": 4},
23
- {"category": "HARM_CATEGORY_DANGEROUS", "threshold": 4},
24
- ]})
25
- text_splitter = RecursiveCharacterTextSplitter(separators=["\n\n", "\n","."], chunk_size=40_000, chunk_overlap=500)
26
- with open('./sample.txt', 'r') as file:
27
- essay = file.read()
28
 
29
- docs = text_splitter.create_documents([essay])
30
- for doc in docs:
31
- print(count_tokens(doc.page_content))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
 
1
  import aiohttp
2
+ import asyncio
3
+ import json,os
4
+ import yaml
5
  import google.generativeai as palm
6
+ from App.Embedding.utils.Initialize import search
7
+ PALM_API = ""
8
+ API_KEY = os.environ.get("PALM_API", PALM_API)
 
 
 
 
9
  palm.configure(api_key=API_KEY)
10
+ class GenerativeAIAssistant:
11
+ def __init__(self, api_key=API_KEY, model='chat-bison-001', temperature=0.85,
12
+ candidate_count=1, top_k=40, top_p=0.95):
13
+ self.api_key = api_key
14
+ self.model = model
15
+ self.temperature = temperature
16
+ self.candidate_count = candidate_count
17
+ self.top_k = top_k
18
+ self.top_p = top_p
19
+ self.examples=[{"input": {"content": "hello"}, "output": {"content": "Hello to you too! How can I help you today?"}}]
20
+ self.context = "You are a helpful assistant"
21
 
22
+ def generate_template(question,task_id):
23
+ contexts=search(question,task_id=task_id)
24
+ context_yaml = ""
25
+ for context in contexts:
26
+ context_yaml += "\n"+ yaml.dump(context)
27
+ Template =f'''
28
+ #Instructions
29
+ You are given the following context in yaml of a transcript of a youtube video, the start and end times are indicated and the text that was said is also given. You are also given a question, use the context to answer the question in a consise manner, make it short and to the point, don't provide additional details.
30
+ Make it short and to the point, not more than 1 PARAGRAPH.
31
 
32
+ #Context
33
+ {context_yaml}
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
+ #Question
36
+ {question}
37
+ '''
38
+ return Template
39
+
40
+ async def generate_message(self, messages,task_id):
41
+ latest_message = messages[-1]['content']
42
+ latest_message={"content":self.generate_template(latest_message,task_id)}
43
+ messages[-1]=latest_message
44
+ url = f'https://generativelanguage.googleapis.com/v1beta3/models/{self.model}:generateMessage?key={self.api_key}'
45
+ data = {
46
+ "prompt": {
47
+ "context": self.context,
48
+ "examples": self.examples,
49
+ "messages": messages
50
+ },
51
+ "temperature": self.temperature,
52
+ "top_k": self.top_k,
53
+ "top_p": self.top_p,
54
+ "candidate_count": self.candidate_count
55
+ }
56
+
57
+ async with aiohttp.ClientSession() as session:
58
+ async with session.post(url, json=data, headers={'Content-Type': 'application/json'}) as response:
59
+ try:
60
+ return await response.json()['candidates']
61
+ except Exception as e:
62
+ return f"Error ⚠️ {e}"
63
+
64
+
65