meeh
Browse files- App/Chat/utils/Summarize.py +67 -58
App/Chat/utils/Summarize.py
CHANGED
@@ -1,17 +1,23 @@
|
|
1 |
import aiohttp
|
2 |
-
import asyncio,pprint
|
3 |
import google.generativeai as palm
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain import PromptTemplate
|
6 |
import os
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
10 |
|
11 |
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
|
|
|
|
15 |
|
16 |
|
17 |
map_prompt = """
|
@@ -29,69 +35,72 @@ Return your response in a detailed verbose paragraph which covers the text. Make
|
|
29 |
|
30 |
SUMMARY:
|
31 |
"""
|
32 |
-
def count_tokens(text):
|
33 |
-
return palm.count_message_tokens(prompt=text)['token_count']
|
34 |
-
|
35 |
-
|
36 |
-
async def PalmTextModel(text,candidates=1):
|
37 |
-
url = f"https://generativelanguage.googleapis.com/v1beta2/models/text-bison-001:generateText?key={API_KEY}"
|
38 |
-
|
39 |
-
headers = {
|
40 |
-
"Content-Type": "application/json",
|
41 |
-
}
|
42 |
-
|
43 |
-
data = {
|
44 |
-
"prompt": {
|
45 |
-
"text": text
|
46 |
-
},
|
47 |
-
"temperature": 0.95,
|
48 |
-
"top_k": 100,
|
49 |
-
"top_p": 0.95,
|
50 |
-
"candidate_count": candidates,
|
51 |
-
"max_output_tokens": 1024,
|
52 |
-
"stop_sequences": ["</output>"],
|
53 |
-
"safety_settings": [
|
54 |
-
{"category": "HARM_CATEGORY_DEROGATORY", "threshold": 4},
|
55 |
-
{"category": "HARM_CATEGORY_TOXICITY", "threshold": 4},
|
56 |
-
{"category": "HARM_CATEGORY_VIOLENCE", "threshold": 4},
|
57 |
-
{"category": "HARM_CATEGORY_SEXUAL", "threshold": 4},
|
58 |
-
{"category": "HARM_CATEGORY_MEDICAL", "threshold": 4},
|
59 |
-
{"category": "HARM_CATEGORY_DANGEROUS", "threshold": 4},
|
60 |
-
],
|
61 |
-
}
|
62 |
-
|
63 |
-
|
64 |
-
async with aiohttp.ClientSession() as session:
|
65 |
-
async with session.post(url, json=data, headers=headers) as response:
|
66 |
-
if response.status == 200:
|
67 |
-
result = await response.json()
|
68 |
-
# print(result)
|
69 |
-
if candidates>1:
|
70 |
-
temp = [candidate["output"] for candidate in result["candidates"]]
|
71 |
-
return temp
|
72 |
-
temp = result["candidates"][0]["output"]
|
73 |
-
return temp
|
74 |
-
else:
|
75 |
-
print(f"Error: {response.status}\n{await response.text()}")
|
76 |
|
77 |
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
|
|
80 |
docs = text_splitter.create_documents([essay])
|
81 |
|
82 |
-
#for 1 large document
|
83 |
if len(docs) == 1:
|
84 |
-
tasks = [
|
|
|
|
|
85 |
# Gather and execute the tasks concurrently
|
86 |
responses = await asyncio.gather(*tasks)
|
87 |
-
ans=" ".join(responses)
|
88 |
-
return ans
|
89 |
|
90 |
tasks = [PalmTextModel(map_prompt.format(text=doc.page_content)) for doc in docs]
|
91 |
# Gather and execute the tasks concurrently
|
92 |
responses = await asyncio.gather(*tasks)
|
93 |
-
main=" ".join(responses)
|
94 |
-
ans=await PalmTextModel(combine_prompt.format(text=main),candidates=1)
|
95 |
return ans
|
96 |
-
|
97 |
-
|
|
|
1 |
import aiohttp
|
2 |
+
import asyncio, pprint
|
3 |
import google.generativeai as palm
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain import PromptTemplate
|
6 |
import os
|
7 |
+
from poe_api_wrapper import PoeApi
|
8 |
+
import pprint
|
9 |
+
client = PoeApi("sXvCnfYy8CHnXNTRlxhmVg==")
|
10 |
+
bot = "Assistant"
|
11 |
|
12 |
|
13 |
+
PALM_API = ""
|
14 |
+
API_KEY = os.environ.get("PALM_API", PALM_API)
|
15 |
+
palm.configure(api_key=API_KEY)
|
16 |
|
17 |
|
18 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
19 |
+
separators=["\n\n", "\n", "."], chunk_size=40_000, chunk_overlap=500
|
20 |
+
)
|
21 |
|
22 |
|
23 |
map_prompt = """
|
|
|
35 |
|
36 |
SUMMARY:
|
37 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
|
40 |
+
def count_tokens(text):
|
41 |
+
return palm.count_message_tokens(prompt=text)["token_count"]
|
42 |
+
|
43 |
+
|
44 |
+
# async def PalmTextModel(text, candidates=1):
|
45 |
+
# url = f"https://generativelanguage.googleapis.com/v1beta2/models/text-bison-001:generateText?key={API_KEY}"
|
46 |
+
|
47 |
+
# headers = {
|
48 |
+
# "Content-Type": "application/json",
|
49 |
+
# }
|
50 |
+
|
51 |
+
# data = {
|
52 |
+
# "prompt": {"text": text},
|
53 |
+
# "temperature": 0.95,
|
54 |
+
# "top_k": 100,
|
55 |
+
# "top_p": 0.95,
|
56 |
+
# "candidate_count": candidates,
|
57 |
+
# "max_output_tokens": 1024,
|
58 |
+
# "stop_sequences": ["</output>"],
|
59 |
+
# "safety_settings": [
|
60 |
+
# {"category": "HARM_CATEGORY_DEROGATORY", "threshold": 4},
|
61 |
+
# {"category": "HARM_CATEGORY_TOXICITY", "threshold": 4},
|
62 |
+
# {"category": "HARM_CATEGORY_VIOLENCE", "threshold": 4},
|
63 |
+
# {"category": "HARM_CATEGORY_SEXUAL", "threshold": 4},
|
64 |
+
# {"category": "HARM_CATEGORY_MEDICAL", "threshold": 4},
|
65 |
+
# {"category": "HARM_CATEGORY_DANGEROUS", "threshold": 4},
|
66 |
+
# ],
|
67 |
+
# }
|
68 |
+
|
69 |
+
# async with aiohttp.ClientSession() as session:
|
70 |
+
# async with session.post(url, json=data, headers=headers) as response:
|
71 |
+
# if response.status == 200:
|
72 |
+
# result = await response.json()
|
73 |
+
# # print(result)
|
74 |
+
# if candidates > 1:
|
75 |
+
# temp = [candidate["output"] for candidate in result["candidates"]]
|
76 |
+
# return temp
|
77 |
+
# temp = result["candidates"][0]["output"]
|
78 |
+
# return temp
|
79 |
+
# else:
|
80 |
+
# print(f"Error: {response.status}\n{await response.text()}")
|
81 |
+
|
82 |
+
|
83 |
+
async def PalmTextModel(message):
|
84 |
+
for chunk in client.send_message(bot, message,chatCode='TWVzc2FnZTozMDY2MzYwNjQ5OQ=='):
|
85 |
+
pass
|
86 |
+
return chunk["text"]
|
87 |
|
88 |
+
async def Summarizer(essay):
|
89 |
docs = text_splitter.create_documents([essay])
|
90 |
|
91 |
+
# for 1 large document
|
92 |
if len(docs) == 1:
|
93 |
+
tasks = [
|
94 |
+
PalmTextModel(combine_prompt.format(text=doc.page_content)) for doc in docs
|
95 |
+
]
|
96 |
# Gather and execute the tasks concurrently
|
97 |
responses = await asyncio.gather(*tasks)
|
98 |
+
ans = " ".join(responses)
|
99 |
+
return ans
|
100 |
|
101 |
tasks = [PalmTextModel(map_prompt.format(text=doc.page_content)) for doc in docs]
|
102 |
# Gather and execute the tasks concurrently
|
103 |
responses = await asyncio.gather(*tasks)
|
104 |
+
main = " ".join(responses)
|
105 |
+
ans = await PalmTextModel(combine_prompt.format(text=main), candidates=1)
|
106 |
return ans
|
|
|
|