Spaces:
Running
Running
File size: 16,035 Bytes
9c14dee 7715eea 9c14dee 3094566 9c14dee 7715eea 005ff51 7715eea 005ff51 9c14dee 7715eea 005ff51 7715eea 005ff51 7715eea 005ff51 7715eea 005ff51 9c14dee 7715eea 9c14dee 7715eea 9c14dee 7715eea 9c14dee 7715eea 005ff51 9c14dee 005ff51 7715eea 9c14dee 7715eea 9c14dee 7715eea 9c14dee 7715eea 9c14dee 7715eea 9c14dee 7715eea 9c14dee 939d2b5 9c14dee 939d2b5 9c14dee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import os
import cv2
import torch
import numpy as np
import gradio as gr
from PIL import Image
import matplotlib.pyplot as plt
from transformers import AutoModel, AutoProcessor
from ultralytics import YOLO
# Custom CSS for shadcn/Radix UI inspired look
custom_css = """
:root {
--primary: #0f172a;
--primary-foreground: #f8fafc;
--background: #f8fafc;
--card: #ffffff;
--card-foreground: #0f172a;
--border: #e2e8f0;
--ring: #94a3b8;
--radius: 0.5rem;
}
.dark {
--primary: #f8fafc;
--primary-foreground: #0f172a;
--background: #0f172a;
--card: #1e293b;
--card-foreground: #f8fafc;
--border: #334155;
--ring: #94a3b8;
}
.gradio-container {
margin: 0 !important;
padding: 0 !important;
max-width: 100% !important;
}
.main-container {
background-color: var(--background);
border-radius: var(--radius);
padding: 1.5rem;
}
.header {
margin-bottom: 1.5rem;
border-bottom: 1px solid var(--border);
padding-bottom: 1rem;
}
.header h1 {
font-size: 1.875rem;
font-weight: 700;
color: var(--primary);
margin-bottom: 0.5rem;
}
.header p {
color: var(--card-foreground);
opacity: 0.8;
}
.tab-nav {
background-color: var(--card);
border: 1px solid var(--border);
border-radius: var(--radius);
padding: 0.25rem;
margin-bottom: 1.5rem;
}
.tab-nav button {
border-radius: calc(var(--radius) - 0.25rem) !important;
font-weight: 500 !important;
transition: all 0.2s ease-in-out !important;
}
.tab-nav button.selected {
background-color: var(--primary) !important;
color: var(--primary-foreground) !important;
}
.input-panel, .output-panel {
background-color: var(--card);
border: 1px solid var(--border);
border-radius: var(--radius);
padding: 1.5rem;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.05);
}
.gr-button-primary {
background-color: var(--primary) !important;
color: var(--primary-foreground) !important;
border-radius: var(--radius) !important;
font-weight: 500 !important;
transition: all 0.2s ease-in-out !important;
}
.gr-button-primary:hover {
opacity: 0.9 !important;
}
.gr-form {
border: none !important;
background: transparent !important;
}
.gr-input, .gr-select {
border: 1px solid var(--border) !important;
border-radius: var(--radius) !important;
padding: 0.5rem 0.75rem !important;
}
.gr-panel {
border: none !important;
}
.footer {
margin-top: 1.5rem;
border-top: 1px solid var(--border);
padding-top: 1rem;
font-size: 0.875rem;
color: var(--card-foreground);
opacity: 0.7;
}
"""
# Available model sizes
DETECTION_MODELS = {
"small": "yolov8s-worldv2.pt",
"medium": "yolov8m-worldv2.pt",
"large": "yolov8l-worldv2.pt",
"xlarge": "yolov8x-worldv2.pt",
}
SEGMENTATION_MODELS = {
"YOLOv8 Nano": "yolov8n-seg.pt",
"YOLOv8 Small": "yolov8s-seg.pt",
"YOLOv8 Medium": "yolov8m-seg.pt",
"YOLOv8 Large": "yolov8l-seg.pt",
}
class YOLOWorldDetector:
def __init__(self, model_size="small"):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model_size = model_size
self.model_name = DETECTION_MODELS[model_size]
print(f"Loading {self.model_name} on {self.device}...")
try:
# Try to load using Ultralytics YOLOWorld
from ultralytics import YOLOWorld
self.model = YOLOWorld(self.model_name)
self.model_type = "yoloworld"
print("YOLOWorld model loaded successfully!")
except Exception as e:
print(f"Error loading YOLOWorld model: {e}")
print("Falling back to standard YOLOv8 for detection...")
# Fallback to YOLOv8
self.model = YOLO("yolov8n.pt")
self.model_type = "yolov8"
print("YOLOv8 fallback model loaded successfully!")
# Segmentation models
self.seg_models = {}
def change_model(self, model_size):
if model_size != self.model_size:
self.model_size = model_size
self.model_name = DETECTION_MODELS[model_size]
print(f"Loading {self.model_name} on {self.device}...")
try:
# Try to load using Ultralytics YOLOWorld
from ultralytics import YOLOWorld
self.model = YOLOWorld(self.model_name)
self.model_type = "yoloworld"
print("YOLOWorld model loaded successfully!")
except Exception as e:
print(f"Error loading YOLOWorld model: {e}")
print("Falling back to standard YOLOv8 for detection...")
# Fallback to YOLOv8
self.model = YOLO("yolov8n.pt")
self.model_type = "yolov8"
print("YOLOv8 fallback model loaded successfully!")
return f"Using {self.model_name} model"
def load_seg_model(self, model_name):
if model_name not in self.seg_models:
print(f"Loading segmentation model {model_name}...")
self.seg_models[model_name] = YOLO(SEGMENTATION_MODELS[model_name])
print(f"Segmentation model {model_name} loaded successfully!")
return self.seg_models[model_name]
def detect(self, image, text_prompt, confidence_threshold=0.3):
if image is None:
return None, "No image provided"
# Process the image
if isinstance(image, str):
img_for_json = cv2.imread(image)
elif isinstance(image, np.ndarray):
img_for_json = image.copy()
else:
# Convert PIL Image to numpy array if needed
img_for_json = np.array(image)
# Run inference based on model type
if self.model_type == "yoloworld":
try:
# YOLOWorld supports text prompts
results = self.model.predict(
source=image,
classes=text_prompt.split(','),
conf=confidence_threshold,
verbose=False
)
except Exception as e:
print(f"Error during YOLOWorld inference: {e}")
# If YOLOWorld inference fails, try to use it as standard YOLO
results = self.model.predict(
source=image,
conf=confidence_threshold,
verbose=False
)
else:
# Standard YOLO doesn't use text prompts
results = self.model.predict(
source=image,
conf=confidence_threshold,
verbose=False
)
# Get the plotted result
res_plotted = results[0].plot()
# Convert results to JSON format (percentages)
json_results = []
img_height, img_width = img_for_json.shape[:2]
for i, (box, cls, conf) in enumerate(zip(
results[0].boxes.xyxy.cpu().numpy(),
results[0].boxes.cls.cpu().numpy(),
results[0].boxes.conf.cpu().numpy()
)):
x1, y1, x2, y2 = box
json_results.append({
"bbox": {
"x": (x1 / img_width) * 100,
"y": (y1 / img_height) * 100,
"width": ((x2 - x1) / img_width) * 100,
"height": ((y2 - y1) / img_height) * 100
},
"score": float(conf),
"label": int(cls),
"label_text": results[0].names[int(cls)]
})
return res_plotted, json_results
def segment(self, image, model_name, confidence_threshold=0.3):
if image is None:
return None, "No image provided"
# Load segmentation model if not already loaded
model = self.load_seg_model(model_name)
# Run inference
results = model(image, conf=confidence_threshold)
# Create visualization
fig, ax = plt.subplots(1, 1, figsize=(12, 9))
ax.axis('off')
# Plot segmentation results
res_plotted = results[0].plot()
# Convert results to JSON format (percentages)
json_results = []
if hasattr(results[0], 'masks') and results[0].masks is not None:
img_height, img_width = results[0].orig_shape
for i, (box, mask, cls, conf) in enumerate(zip(
results[0].boxes.xyxy.cpu().numpy(),
results[0].masks.data.cpu().numpy(),
results[0].boxes.cls.cpu().numpy(),
results[0].boxes.conf.cpu().numpy()
)):
x1, y1, x2, y2 = box
# Convert mask to polygon for SVG-like representation
# Simplified approach - in production you might want a more sophisticated polygon extraction
contours, _ = cv2.findContours((mask > 0.5).astype(np.uint8),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
if contours:
# Get the largest contour
largest_contour = max(contours, key=cv2.contourArea)
# Simplify the contour
epsilon = 0.005 * cv2.arcLength(largest_contour, True)
approx = cv2.approxPolyDP(largest_contour, epsilon, True)
# Convert to percentage coordinates
points = []
for point in approx:
x, y = point[0]
points.append({
"x": (x / img_width) * 100,
"y": (y / img_height) * 100
})
json_results.append({
"bbox": {
"x": (x1 / img_width) * 100,
"y": (y1 / img_height) * 100,
"width": ((x2 - x1) / img_width) * 100,
"height": ((y2 - y1) / img_height) * 100
},
"score": float(conf),
"label": int(cls),
"label_text": results[0].names[int(cls)],
"polygon": points
})
return res_plotted, json_results
# Initialize detector with default model
detector = YOLOWorldDetector(model_size="small")
def detection_inference(image, text_prompt, confidence, model_size):
# Update model if needed
detector.change_model(model_size)
# Run detection
result_image, json_results = detector.detect(
image,
text_prompt,
confidence_threshold=confidence
)
return result_image, str(json_results)
def segmentation_inference(image, confidence, model_name):
# Run segmentation
result_image, json_results = detector.segment(
image,
model_name,
confidence_threshold=confidence
)
return result_image, str(json_results)
# Create Gradio interface
with gr.Blocks(title="YOLO Vision Suite", css=custom_css) as demo:
with gr.Column(elem_classes="main-container"):
with gr.Column(elem_classes="header"):
gr.Markdown("# YOLO Vision Suite")
gr.Markdown("Advanced object detection and segmentation powered by YOLO models")
with gr.Tabs(elem_classes="tab-nav") as tabs:
with gr.TabItem("Object Detection", elem_id="detection-tab"):
with gr.Row():
with gr.Column(elem_classes="input-panel"):
gr.Markdown("### Input")
input_image = gr.Image(label="Upload Image", type="numpy")
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="person, car, dog",
value="person, car, dog",
elem_classes="gr-input"
)
with gr.Row():
confidence = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.3,
step=0.05,
label="Confidence Threshold"
)
model_dropdown = gr.Dropdown(
choices=list(DETECTION_MODELS.keys()),
value="small",
label="Model Size",
elem_classes="gr-select"
)
detect_button = gr.Button("Detect Objects", elem_classes="gr-button-primary")
with gr.Column(elem_classes="output-panel"):
gr.Markdown("### Results")
output_image = gr.Image(label="Detection Result")
with gr.Accordion("JSON Output", open=False):
json_output = gr.Textbox(
label="Bounding Box Data (Percentage Coordinates)",
elem_classes="gr-input"
)
with gr.TabItem("Segmentation", elem_id="segmentation-tab"):
with gr.Row():
with gr.Column(elem_classes="input-panel"):
gr.Markdown("### Input")
seg_input_image = gr.Image(label="Upload Image", type="numpy")
with gr.Row():
seg_confidence = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.3,
step=0.05,
label="Confidence Threshold"
)
seg_model_dropdown = gr.Dropdown(
choices=list(SEGMENTATION_MODELS.keys()),
value="YOLOv8 Small",
label="Model Size",
elem_classes="gr-select"
)
segment_button = gr.Button("Segment Image", elem_classes="gr-button-primary")
with gr.Column(elem_classes="output-panel"):
gr.Markdown("### Results")
seg_output_image = gr.Image(label="Segmentation Result")
with gr.Accordion("JSON Output", open=False):
seg_json_output = gr.Textbox(
label="Segmentation Data (Percentage Coordinates)",
elem_classes="gr-input"
)
with gr.Column(elem_classes="footer"):
gr.Markdown("""
### Tips
- For object detection, enter comma-separated text prompts to specify what to detect
- For segmentation, the model will identify common objects automatically
- Larger models provide better accuracy but require more processing power
- The JSON output provides coordinates as percentages of image dimensions, compatible with SVG
""")
# Set up event handlers
detect_button.click(
detection_inference,
inputs=[input_image, text_prompt, confidence, model_dropdown],
outputs=[output_image, json_output]
)
segment_button.click(
segmentation_inference,
inputs=[seg_input_image, seg_confidence, seg_model_dropdown],
outputs=[seg_output_image, seg_json_output]
)
if __name__ == "__main__":
demo.launch() |