Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -122,6 +122,178 @@ custom_css = """
|
|
122 |
font-size: 0.875rem;
|
123 |
color: var(--card-foreground);
|
124 |
opacity: 0.7;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
}
|
126 |
"""
|
127 |
|
@@ -336,6 +508,119 @@ class YOLOWorldDetector:
|
|
336 |
# Initialize detector with default model
|
337 |
detector = YOLOWorldDetector(model_size="small")
|
338 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
def detection_inference(image, text_prompt, confidence, model_size):
|
340 |
# Update model if needed
|
341 |
detector.change_model(model_size)
|
@@ -347,7 +632,14 @@ def detection_inference(image, text_prompt, confidence, model_size):
|
|
347 |
confidence_threshold=confidence
|
348 |
)
|
349 |
|
350 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
|
352 |
def segmentation_inference(image, confidence, model_name):
|
353 |
# Run segmentation
|
@@ -357,7 +649,14 @@ def segmentation_inference(image, confidence, model_name):
|
|
357 |
confidence_threshold=confidence
|
358 |
)
|
359 |
|
360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
|
362 |
# Create Gradio interface
|
363 |
with gr.Blocks(title="YOLO Vision Suite", css=custom_css) as demo:
|
@@ -368,10 +667,10 @@ with gr.Blocks(title="YOLO Vision Suite", css=custom_css) as demo:
|
|
368 |
|
369 |
with gr.Tabs(elem_classes="tab-nav") as tabs:
|
370 |
with gr.TabItem("Object Detection", elem_id="detection-tab"):
|
371 |
-
with gr.Row():
|
372 |
-
with gr.Column(elem_classes="input-panel"):
|
373 |
gr.Markdown("### Input")
|
374 |
-
input_image = gr.Image(label="Upload Image", type="numpy")
|
375 |
text_prompt = gr.Textbox(
|
376 |
label="Text Prompt",
|
377 |
placeholder="person, car, dog",
|
@@ -394,20 +693,23 @@ with gr.Blocks(title="YOLO Vision Suite", css=custom_css) as demo:
|
|
394 |
)
|
395 |
detect_button = gr.Button("Detect Objects", elem_classes="gr-button-primary")
|
396 |
|
397 |
-
with gr.Column(elem_classes="output-panel"):
|
398 |
gr.Markdown("### Results")
|
399 |
-
output_image = gr.Image(label="Detection Result")
|
400 |
-
with gr.Accordion("
|
|
|
|
|
401 |
json_output = gr.Textbox(
|
402 |
label="Bounding Box Data (Percentage Coordinates)",
|
403 |
-
elem_classes="gr-input"
|
|
|
404 |
)
|
405 |
|
406 |
with gr.TabItem("Segmentation", elem_id="segmentation-tab"):
|
407 |
-
with gr.Row():
|
408 |
-
with gr.Column(elem_classes="input-panel"):
|
409 |
gr.Markdown("### Input")
|
410 |
-
seg_input_image = gr.Image(label="Upload Image", type="numpy")
|
411 |
with gr.Row():
|
412 |
seg_confidence = gr.Slider(
|
413 |
minimum=0.1,
|
@@ -424,35 +726,49 @@ with gr.Blocks(title="YOLO Vision Suite", css=custom_css) as demo:
|
|
424 |
)
|
425 |
segment_button = gr.Button("Segment Image", elem_classes="gr-button-primary")
|
426 |
|
427 |
-
with gr.Column(elem_classes="output-panel"):
|
428 |
gr.Markdown("### Results")
|
429 |
-
seg_output_image = gr.Image(label="Segmentation Result")
|
430 |
-
with gr.Accordion("
|
|
|
|
|
431 |
seg_json_output = gr.Textbox(
|
432 |
label="Segmentation Data (Percentage Coordinates)",
|
433 |
-
elem_classes="gr-input"
|
|
|
434 |
)
|
435 |
|
436 |
with gr.Column(elem_classes="footer"):
|
437 |
-
gr.
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
|
445 |
# Set up event handlers
|
446 |
detect_button.click(
|
447 |
detection_inference,
|
448 |
inputs=[input_image, text_prompt, confidence, model_dropdown],
|
449 |
-
outputs=[output_image, json_output]
|
450 |
)
|
451 |
|
452 |
segment_button.click(
|
453 |
segmentation_inference,
|
454 |
inputs=[seg_input_image, seg_confidence, seg_model_dropdown],
|
455 |
-
outputs=[seg_output_image, seg_json_output]
|
456 |
)
|
457 |
|
458 |
if __name__ == "__main__":
|
|
|
122 |
font-size: 0.875rem;
|
123 |
color: var(--card-foreground);
|
124 |
opacity: 0.7;
|
125 |
+
}"""
|
126 |
+
# Custom CSS for a more modern UI inspired by NextUI
|
127 |
+
custom_css = """
|
128 |
+
:root {
|
129 |
+
--primary: #0070f3;
|
130 |
+
--primary-foreground: #ffffff;
|
131 |
+
--background: #f5f5f5;
|
132 |
+
--card: #ffffff;
|
133 |
+
--card-foreground: #111111;
|
134 |
+
--border: #eaeaea;
|
135 |
+
--ring: #0070f3;
|
136 |
+
--shadow: 0 4px 14px 0 rgba(0, 118, 255, 0.1);
|
137 |
+
}
|
138 |
+
|
139 |
+
.dark {
|
140 |
+
--primary: #0070f3;
|
141 |
+
--primary-foreground: #ffffff;
|
142 |
+
--background: #000000;
|
143 |
+
--card: #111111;
|
144 |
+
--card-foreground: #ffffff;
|
145 |
+
--border: #333333;
|
146 |
+
--ring: #0070f3;
|
147 |
+
}
|
148 |
+
|
149 |
+
.gradio-container {
|
150 |
+
margin: 0 !important;
|
151 |
+
padding: 0 !important;
|
152 |
+
max-width: 100% !important;
|
153 |
+
}
|
154 |
+
|
155 |
+
.main-container {
|
156 |
+
background-color: var(--background);
|
157 |
+
padding: 2rem;
|
158 |
+
min-height: 100vh;
|
159 |
+
}
|
160 |
+
|
161 |
+
.header {
|
162 |
+
margin-bottom: 2rem;
|
163 |
+
text-align: center;
|
164 |
+
}
|
165 |
+
|
166 |
+
.header h1 {
|
167 |
+
font-size: 2.5rem;
|
168 |
+
font-weight: 800;
|
169 |
+
color: var(--card-foreground);
|
170 |
+
margin-bottom: 0.5rem;
|
171 |
+
background: linear-gradient(to right, #0070f3, #00bfff);
|
172 |
+
-webkit-background-clip: text;
|
173 |
+
-webkit-text-fill-color: transparent;
|
174 |
+
}
|
175 |
+
|
176 |
+
.header p {
|
177 |
+
color: var(--card-foreground);
|
178 |
+
opacity: 0.8;
|
179 |
+
font-size: 1.1rem;
|
180 |
+
}
|
181 |
+
|
182 |
+
.tab-nav {
|
183 |
+
background-color: var(--card);
|
184 |
+
border-radius: var(--radius);
|
185 |
+
padding: 0.5rem;
|
186 |
+
margin-bottom: 2rem;
|
187 |
+
box-shadow: var(--shadow);
|
188 |
+
}
|
189 |
+
|
190 |
+
.tab-nav button {
|
191 |
+
border-radius: var(--radius) !important;
|
192 |
+
font-weight: 600 !important;
|
193 |
+
transition: all 0.2s ease-in-out !important;
|
194 |
+
padding: 0.75rem 1.5rem !important;
|
195 |
+
}
|
196 |
+
|
197 |
+
.tab-nav button.selected {
|
198 |
+
background-color: var(--primary) !important;
|
199 |
+
color: var(--primary-foreground) !important;
|
200 |
+
transform: translateY(-2px);
|
201 |
+
box-shadow: 0 4px 14px 0 rgba(0, 118, 255, 0.25);
|
202 |
+
}
|
203 |
+
|
204 |
+
.input-panel, .output-panel {
|
205 |
+
background-color: var(--card);
|
206 |
+
border-radius: var(--radius);
|
207 |
+
padding: 1.5rem;
|
208 |
+
box-shadow: var(--shadow);
|
209 |
+
height: 100%;
|
210 |
+
display: flex;
|
211 |
+
flex-direction: column;
|
212 |
+
}
|
213 |
+
|
214 |
+
.input-panel h3, .output-panel h3 {
|
215 |
+
font-size: 1.25rem;
|
216 |
+
font-weight: 600;
|
217 |
+
margin-bottom: 1rem;
|
218 |
+
color: var(--card-foreground);
|
219 |
+
border-bottom: 2px solid var(--primary);
|
220 |
+
padding-bottom: 0.5rem;
|
221 |
+
display: inline-block;
|
222 |
+
}
|
223 |
+
|
224 |
+
.gr-button-primary {
|
225 |
+
background-color: var(--primary) !important;
|
226 |
+
color: var(--primary-foreground) !important;
|
227 |
+
border-radius: var(--radius) !important;
|
228 |
+
font-weight: 600 !important;
|
229 |
+
transition: all 0.2s ease-in-out !important;
|
230 |
+
padding: 0.75rem 1.5rem !important;
|
231 |
+
box-shadow: 0 4px 14px 0 rgba(0, 118, 255, 0.25) !important;
|
232 |
+
width: 100%;
|
233 |
+
margin-top: 1rem;
|
234 |
+
}
|
235 |
+
|
236 |
+
.gr-button-primary:hover {
|
237 |
+
transform: translateY(-2px) !important;
|
238 |
+
box-shadow: 0 6px 20px rgba(0, 118, 255, 0.35) !important;
|
239 |
+
}
|
240 |
+
|
241 |
+
.gr-form {
|
242 |
+
border: none !important;
|
243 |
+
background: transparent !important;
|
244 |
+
}
|
245 |
+
|
246 |
+
.gr-input, .gr-select {
|
247 |
+
border: 1px solid var(--border) !important;
|
248 |
+
border-radius: var(--radius) !important;
|
249 |
+
padding: 0.75rem 1rem !important;
|
250 |
+
transition: all 0.2s ease-in-out !important;
|
251 |
+
}
|
252 |
+
|
253 |
+
.gr-input:focus, .gr-select:focus {
|
254 |
+
border-color: var(--primary) !important;
|
255 |
+
box-shadow: 0 0 0 2px rgba(0, 118, 255, 0.25) !important;
|
256 |
+
}
|
257 |
+
|
258 |
+
.gr-panel {
|
259 |
+
border: none !important;
|
260 |
+
}
|
261 |
+
|
262 |
+
.gr-accordion {
|
263 |
+
border: 1px solid var(--border) !important;
|
264 |
+
border-radius: var(--radius) !important;
|
265 |
+
overflow: hidden;
|
266 |
+
}
|
267 |
+
|
268 |
+
.footer {
|
269 |
+
margin-top: 2rem;
|
270 |
+
border-top: 1px solid var(--border);
|
271 |
+
padding-top: 1.5rem;
|
272 |
+
font-size: 0.9rem;
|
273 |
+
color: var(--card-foreground);
|
274 |
+
opacity: 0.7;
|
275 |
+
text-align: center;
|
276 |
+
}
|
277 |
+
|
278 |
+
.footer-card {
|
279 |
+
background-color: var(--card);
|
280 |
+
border-radius: var(--radius);
|
281 |
+
padding: 1.5rem;
|
282 |
+
box-shadow: var(--shadow);
|
283 |
+
}
|
284 |
+
|
285 |
+
.tips-grid {
|
286 |
+
display: grid;
|
287 |
+
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
288 |
+
gap: 1rem;
|
289 |
+
margin-top: 1rem;
|
290 |
+
}
|
291 |
+
|
292 |
+
.tip-card {
|
293 |
+
background-color: var(--card);
|
294 |
+
border-radius: var(--radius);
|
295 |
+
padding: 1rem;
|
296 |
+
border-left: 3px solid var(--primary);
|
297 |
}
|
298 |
"""
|
299 |
|
|
|
508 |
# Initialize detector with default model
|
509 |
detector = YOLOWorldDetector(model_size="small")
|
510 |
|
511 |
+
def create_svg_from_detections(json_results, img_width, img_height):
|
512 |
+
"""Convert detection results to SVG format"""
|
513 |
+
svg_header = f'<svg width="{img_width}" height="{img_height}" xmlns="http://www.w3.org/2000/svg">'
|
514 |
+
svg_content = ""
|
515 |
+
|
516 |
+
# Color palette for different classes
|
517 |
+
colors = [
|
518 |
+
"#FF3B30", "#FF9500", "#FFCC00", "#4CD964",
|
519 |
+
"#5AC8FA", "#007AFF", "#5856D6", "#FF2D55"
|
520 |
+
]
|
521 |
+
|
522 |
+
for i, result in enumerate(json_results):
|
523 |
+
bbox = result["bbox"]
|
524 |
+
label = result.get("label_text", f"Object {i}")
|
525 |
+
score = result.get("score", 0)
|
526 |
+
|
527 |
+
# Convert percentage to absolute coordinates
|
528 |
+
x = (bbox["x"] / 100) * img_width
|
529 |
+
y = (bbox["y"] / 100) * img_height
|
530 |
+
width = (bbox["width"] / 100) * img_width
|
531 |
+
height = (bbox["height"] / 100) * img_height
|
532 |
+
|
533 |
+
# Select color based on class index
|
534 |
+
color = colors[i % len(colors)]
|
535 |
+
|
536 |
+
# Create rectangle element
|
537 |
+
svg_content += f'''
|
538 |
+
<rect
|
539 |
+
x="{x:.2f}"
|
540 |
+
y="{y:.2f}"
|
541 |
+
width="{width:.2f}"
|
542 |
+
height="{height:.2f}"
|
543 |
+
stroke="{color}"
|
544 |
+
stroke-width="2"
|
545 |
+
fill="none"
|
546 |
+
data-label="{label}"
|
547 |
+
data-score="{score:.2f}"
|
548 |
+
/>
|
549 |
+
<text
|
550 |
+
x="{x:.2f}"
|
551 |
+
y="{y-5:.2f}"
|
552 |
+
font-family="Arial"
|
553 |
+
font-size="12"
|
554 |
+
fill="{color}"
|
555 |
+
>{label} ({score:.2f})</text>'''
|
556 |
+
|
557 |
+
svg_footer = "\n</svg>"
|
558 |
+
return svg_header + svg_content + svg_footer
|
559 |
+
|
560 |
+
def create_svg_from_segmentation(json_results, img_width, img_height):
|
561 |
+
"""Convert segmentation results to SVG format"""
|
562 |
+
svg_header = f'<svg width="{img_width}" height="{img_height}" xmlns="http://www.w3.org/2000/svg">'
|
563 |
+
svg_content = ""
|
564 |
+
|
565 |
+
# Color palette for different classes
|
566 |
+
colors = [
|
567 |
+
"#FF3B30", "#FF9500", "#FFCC00", "#4CD964",
|
568 |
+
"#5AC8FA", "#007AFF", "#5856D6", "#FF2D55"
|
569 |
+
]
|
570 |
+
|
571 |
+
for i, result in enumerate(json_results):
|
572 |
+
label = result.get("label_text", f"Object {i}")
|
573 |
+
score = result.get("score", 0)
|
574 |
+
|
575 |
+
# Select color based on class index
|
576 |
+
color = colors[i % len(colors)]
|
577 |
+
|
578 |
+
# Create polygon if available
|
579 |
+
if "polygon" in result:
|
580 |
+
points_str = " ".join([
|
581 |
+
f"{(p['x']/100)*img_width:.2f},{(p['y']/100)*img_height:.2f}"
|
582 |
+
for p in result["polygon"]
|
583 |
+
])
|
584 |
+
|
585 |
+
svg_content += f'''
|
586 |
+
<polygon
|
587 |
+
points="{points_str}"
|
588 |
+
stroke="{color}"
|
589 |
+
stroke-width="2"
|
590 |
+
fill="{color}33"
|
591 |
+
data-label="{label}"
|
592 |
+
data-score="{score:.2f}"
|
593 |
+
/>'''
|
594 |
+
|
595 |
+
# Also add bounding box
|
596 |
+
bbox = result["bbox"]
|
597 |
+
x = (bbox["x"] / 100) * img_width
|
598 |
+
y = (bbox["y"] / 100) * img_height
|
599 |
+
width = (bbox["width"] / 100) * img_width
|
600 |
+
height = (bbox["height"] / 100) * img_height
|
601 |
+
|
602 |
+
svg_content += f'''
|
603 |
+
<rect
|
604 |
+
x="{x:.2f}"
|
605 |
+
y="{y:.2f}"
|
606 |
+
width="{width:.2f}"
|
607 |
+
height="{height:.2f}"
|
608 |
+
stroke="{color}"
|
609 |
+
stroke-width="1"
|
610 |
+
fill="none"
|
611 |
+
stroke-dasharray="5,5"
|
612 |
+
/>
|
613 |
+
<text
|
614 |
+
x="{x:.2f}"
|
615 |
+
y="{y-5:.2f}"
|
616 |
+
font-family="Arial"
|
617 |
+
font-size="12"
|
618 |
+
fill="{color}"
|
619 |
+
>{label} ({score:.2f})</text>'''
|
620 |
+
|
621 |
+
svg_footer = "\n</svg>"
|
622 |
+
return svg_header + svg_content + svg_footer
|
623 |
+
|
624 |
def detection_inference(image, text_prompt, confidence, model_size):
|
625 |
# Update model if needed
|
626 |
detector.change_model(model_size)
|
|
|
632 |
confidence_threshold=confidence
|
633 |
)
|
634 |
|
635 |
+
# Create SVG from detection results
|
636 |
+
if isinstance(json_results, list) and len(json_results) > 0:
|
637 |
+
img_height, img_width = result_image.shape[:2]
|
638 |
+
svg_output = create_svg_from_detections(json_results, img_width, img_height)
|
639 |
+
else:
|
640 |
+
svg_output = "<svg></svg>"
|
641 |
+
|
642 |
+
return result_image, str(json_results), svg_output
|
643 |
|
644 |
def segmentation_inference(image, confidence, model_name):
|
645 |
# Run segmentation
|
|
|
649 |
confidence_threshold=confidence
|
650 |
)
|
651 |
|
652 |
+
# Create SVG from segmentation results
|
653 |
+
if isinstance(json_results, list) and len(json_results) > 0:
|
654 |
+
img_height, img_width = result_image.shape[:2]
|
655 |
+
svg_output = create_svg_from_segmentation(json_results, img_width, img_height)
|
656 |
+
else:
|
657 |
+
svg_output = "<svg></svg>"
|
658 |
+
|
659 |
+
return result_image, str(json_results), svg_output
|
660 |
|
661 |
# Create Gradio interface
|
662 |
with gr.Blocks(title="YOLO Vision Suite", css=custom_css) as demo:
|
|
|
667 |
|
668 |
with gr.Tabs(elem_classes="tab-nav") as tabs:
|
669 |
with gr.TabItem("Object Detection", elem_id="detection-tab"):
|
670 |
+
with gr.Row(equal_height=True):
|
671 |
+
with gr.Column(elem_classes="input-panel", scale=1):
|
672 |
gr.Markdown("### Input")
|
673 |
+
input_image = gr.Image(label="Upload Image", type="numpy", height=300)
|
674 |
text_prompt = gr.Textbox(
|
675 |
label="Text Prompt",
|
676 |
placeholder="person, car, dog",
|
|
|
693 |
)
|
694 |
detect_button = gr.Button("Detect Objects", elem_classes="gr-button-primary")
|
695 |
|
696 |
+
with gr.Column(elem_classes="output-panel", scale=1):
|
697 |
gr.Markdown("### Results")
|
698 |
+
output_image = gr.Image(label="Detection Result", height=300)
|
699 |
+
with gr.Accordion("SVG Output", open=False, elem_classes="gr-accordion"):
|
700 |
+
svg_output = gr.HTML(label="SVG Visualization")
|
701 |
+
with gr.Accordion("JSON Output", open=False, elem_classes="gr-accordion"):
|
702 |
json_output = gr.Textbox(
|
703 |
label="Bounding Box Data (Percentage Coordinates)",
|
704 |
+
elem_classes="gr-input",
|
705 |
+
lines=5
|
706 |
)
|
707 |
|
708 |
with gr.TabItem("Segmentation", elem_id="segmentation-tab"):
|
709 |
+
with gr.Row(equal_height=True):
|
710 |
+
with gr.Column(elem_classes="input-panel", scale=1):
|
711 |
gr.Markdown("### Input")
|
712 |
+
seg_input_image = gr.Image(label="Upload Image", type="numpy", height=300)
|
713 |
with gr.Row():
|
714 |
seg_confidence = gr.Slider(
|
715 |
minimum=0.1,
|
|
|
726 |
)
|
727 |
segment_button = gr.Button("Segment Image", elem_classes="gr-button-primary")
|
728 |
|
729 |
+
with gr.Column(elem_classes="output-panel", scale=1):
|
730 |
gr.Markdown("### Results")
|
731 |
+
seg_output_image = gr.Image(label="Segmentation Result", height=300)
|
732 |
+
with gr.Accordion("SVG Output", open=False, elem_classes="gr-accordion"):
|
733 |
+
seg_svg_output = gr.HTML(label="SVG Visualization")
|
734 |
+
with gr.Accordion("JSON Output", open=False, elem_classes="gr-accordion"):
|
735 |
seg_json_output = gr.Textbox(
|
736 |
label="Segmentation Data (Percentage Coordinates)",
|
737 |
+
elem_classes="gr-input",
|
738 |
+
lines=5
|
739 |
)
|
740 |
|
741 |
with gr.Column(elem_classes="footer"):
|
742 |
+
with gr.Column(elem_classes="footer-card"):
|
743 |
+
gr.Markdown("### Tips & Information")
|
744 |
+
with gr.Row(elem_classes="tips-grid"):
|
745 |
+
with gr.Column(elem_classes="tip-card"):
|
746 |
+
gr.Markdown("**Detection**")
|
747 |
+
gr.Markdown("Enter comma-separated text prompts to specify what objects to detect")
|
748 |
+
|
749 |
+
with gr.Column(elem_classes="tip-card"):
|
750 |
+
gr.Markdown("**Segmentation**")
|
751 |
+
gr.Markdown("The model will identify and segment common objects automatically")
|
752 |
+
|
753 |
+
with gr.Column(elem_classes="tip-card"):
|
754 |
+
gr.Markdown("**Models**")
|
755 |
+
gr.Markdown("Larger models provide better accuracy but require more processing power")
|
756 |
+
|
757 |
+
with gr.Column(elem_classes="tip-card"):
|
758 |
+
gr.Markdown("**Output**")
|
759 |
+
gr.Markdown("JSON output provides coordinates as percentages, compatible with SVG")
|
760 |
|
761 |
# Set up event handlers
|
762 |
detect_button.click(
|
763 |
detection_inference,
|
764 |
inputs=[input_image, text_prompt, confidence, model_dropdown],
|
765 |
+
outputs=[output_image, json_output, svg_output]
|
766 |
)
|
767 |
|
768 |
segment_button.click(
|
769 |
segmentation_inference,
|
770 |
inputs=[seg_input_image, seg_confidence, seg_model_dropdown],
|
771 |
+
outputs=[seg_output_image, seg_json_output, seg_svg_output]
|
772 |
)
|
773 |
|
774 |
if __name__ == "__main__":
|