Spaces:
Runtime error
Runtime error
Activate live previews
Browse files
app.py
CHANGED
@@ -3,32 +3,39 @@ import numpy as np
|
|
3 |
import random
|
4 |
import spaces
|
5 |
import torch
|
6 |
-
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
|
7 |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
|
|
8 |
|
9 |
dtype = torch.bfloat16
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
-
|
|
|
|
|
13 |
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
MAX_IMAGE_SIZE = 2048
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
if randomize_seed:
|
20 |
seed = random.randint(0, MAX_SEED)
|
21 |
generator = torch.Generator().manual_seed(seed)
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
32 |
examples = [
|
33 |
"a tiny astronaut hatching from an egg on the moon",
|
34 |
"a cat holding a sign that says hello world",
|
|
|
3 |
import random
|
4 |
import spaces
|
5 |
import torch
|
6 |
+
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny
|
7 |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
+
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
9 |
|
10 |
dtype = torch.bfloat16
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
14 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
15 |
+
torch.cuda.empty_cache()
|
16 |
|
17 |
MAX_SEED = np.iinfo(np.int32).max
|
18 |
MAX_IMAGE_SIZE = 2048
|
19 |
|
20 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
21 |
+
|
22 |
+
@spaces.GPU(duration=75)
|
23 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
24 |
if randomize_seed:
|
25 |
seed = random.randint(0, MAX_SEED)
|
26 |
generator = torch.Generator().manual_seed(seed)
|
27 |
+
|
28 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
29 |
+
prompt=prompt,
|
30 |
+
guidance_scale=guidance_scale,
|
31 |
+
num_inference_steps=num_inference_steps,
|
32 |
+
width=width,
|
33 |
+
height=height,
|
34 |
+
generator=generator,
|
35 |
+
output_type="pil",
|
36 |
+
):
|
37 |
+
yield img, seed
|
38 |
+
|
39 |
examples = [
|
40 |
"a tiny astronaut hatching from an egg on the moon",
|
41 |
"a cat holding a sign that says hello world",
|