updated the UI code ✅✅
Browse files- mediSync/app.py +46 -404
mediSync/app.py
CHANGED
@@ -3,391 +3,6 @@ import os
|
|
3 |
import sys
|
4 |
import tempfile
|
5 |
from pathlib import Path
|
6 |
-
|
7 |
-
import gradio as gr
|
8 |
-
import matplotlib.pyplot as plt
|
9 |
-
from PIL import Image
|
10 |
-
|
11 |
-
# Add parent directory to path
|
12 |
-
parent_dir = os.path.dirname(os.path.abspath(__file__))
|
13 |
-
sys.path.append(parent_dir)
|
14 |
-
|
15 |
-
# Import our modules
|
16 |
-
from models.multimodal_fusion import MultimodalFusion
|
17 |
-
from utils.preprocessing import enhance_xray_image, normalize_report_text
|
18 |
-
from utils.visualization import (
|
19 |
-
plot_image_prediction,
|
20 |
-
plot_multimodal_results,
|
21 |
-
plot_report_entities,
|
22 |
-
)
|
23 |
-
|
24 |
-
# Set up logging
|
25 |
-
logging.basicConfig(
|
26 |
-
level=logging.INFO,
|
27 |
-
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
28 |
-
handlers=[logging.StreamHandler(), logging.FileHandler("mediSync.log")],
|
29 |
-
)
|
30 |
-
logger = logging.getLogger(__name__)
|
31 |
-
|
32 |
-
# Create temporary directory for sample data if it doesn't exist
|
33 |
-
os.makedirs(os.path.join(parent_dir, "data", "sample"), exist_ok=True)
|
34 |
-
|
35 |
-
|
36 |
-
# class MediSyncApp:
|
37 |
-
# """
|
38 |
-
# Main application class for the MediSync multi-modal medical analysis system.
|
39 |
-
# """
|
40 |
-
|
41 |
-
# def __init__(self):
|
42 |
-
# """Initialize the application and load models."""
|
43 |
-
# self.logger = logging.getLogger(__name__)
|
44 |
-
# self.logger.info("Initializing MediSync application")
|
45 |
-
|
46 |
-
# # Initialize models with None for lazy loading
|
47 |
-
# self.fusion_model = None
|
48 |
-
# self.image_model = None
|
49 |
-
# self.text_model = None
|
50 |
-
|
51 |
-
# def load_models(self):
|
52 |
-
# """
|
53 |
-
# Load models if not already loaded.
|
54 |
-
|
55 |
-
# Returns:
|
56 |
-
# bool: True if models loaded successfully, False otherwise
|
57 |
-
# """
|
58 |
-
# try:
|
59 |
-
# if self.fusion_model is None:
|
60 |
-
# self.logger.info("Loading models...")
|
61 |
-
# self.fusion_model = MultimodalFusion()
|
62 |
-
# self.image_model = self.fusion_model.image_analyzer
|
63 |
-
# self.text_model = self.fusion_model.text_analyzer
|
64 |
-
# self.logger.info("Models loaded successfully")
|
65 |
-
# return True
|
66 |
-
|
67 |
-
# except Exception as e:
|
68 |
-
# self.logger.error(f"Error loading models: {e}")
|
69 |
-
# return False
|
70 |
-
|
71 |
-
# def analyze_image(self, image):
|
72 |
-
# """
|
73 |
-
# Analyze a medical image.
|
74 |
-
|
75 |
-
# Args:
|
76 |
-
# image: Image file uploaded through Gradio
|
77 |
-
|
78 |
-
# Returns:
|
79 |
-
# tuple: (image, image_results_html, plot_as_html)
|
80 |
-
# """
|
81 |
-
# try:
|
82 |
-
# # Ensure models are loaded
|
83 |
-
# if not self.load_models() or self.image_model is None:
|
84 |
-
# return image, "Error: Models not loaded properly.", None
|
85 |
-
|
86 |
-
# # Save uploaded image to a temporary file
|
87 |
-
# temp_dir = tempfile.mkdtemp()
|
88 |
-
# temp_path = os.path.join(temp_dir, "upload.png")
|
89 |
-
|
90 |
-
# if isinstance(image, str):
|
91 |
-
# # Copy the file if it's a path
|
92 |
-
# from shutil import copyfile
|
93 |
-
|
94 |
-
# copyfile(image, temp_path)
|
95 |
-
# else:
|
96 |
-
# # Save if it's a Gradio UploadButton image
|
97 |
-
# image.save(temp_path)
|
98 |
-
|
99 |
-
# # Run image analysis
|
100 |
-
# self.logger.info(f"Analyzing image: {temp_path}")
|
101 |
-
# results = self.image_model.analyze(temp_path)
|
102 |
-
|
103 |
-
# # Create visualization
|
104 |
-
# fig = plot_image_prediction(
|
105 |
-
# image,
|
106 |
-
# results.get("predictions", []),
|
107 |
-
# f"Primary Finding: {results.get('primary_finding', 'Unknown')}",
|
108 |
-
# )
|
109 |
-
|
110 |
-
# # Convert to HTML for display
|
111 |
-
# plot_html = self.fig_to_html(fig)
|
112 |
-
|
113 |
-
# # Format results as HTML
|
114 |
-
# html_result = f"""
|
115 |
-
# <h2>X-ray Analysis Results</h2>
|
116 |
-
# <p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>
|
117 |
-
# <p><strong>Confidence:</strong> {results.get("confidence", 0):.1%}</p>
|
118 |
-
# <p><strong>Abnormality Detected:</strong> {"Yes" if results.get("has_abnormality", False) else "No"}</p>
|
119 |
-
|
120 |
-
# <h3>Top Predictions:</h3>
|
121 |
-
# <ul>
|
122 |
-
# """
|
123 |
-
|
124 |
-
# # Add top 5 predictions
|
125 |
-
# for label, prob in results.get("predictions", [])[:5]:
|
126 |
-
# html_result += f"<li>{label}: {prob:.1%}</li>"
|
127 |
-
|
128 |
-
# html_result += "</ul>"
|
129 |
-
|
130 |
-
# # Add explanation
|
131 |
-
# explanation = self.image_model.get_explanation(results)
|
132 |
-
# html_result += f"<h3>Analysis Explanation:</h3><p>{explanation}</p>"
|
133 |
-
|
134 |
-
# return image, html_result, plot_html
|
135 |
-
|
136 |
-
# except Exception as e:
|
137 |
-
# self.logger.error(f"Error in image analysis: {e}")
|
138 |
-
# return image, f"Error analyzing image: {str(e)}", None
|
139 |
-
|
140 |
-
# def analyze_text(self, text):
|
141 |
-
# """
|
142 |
-
# Analyze a medical report text.
|
143 |
-
|
144 |
-
# Args:
|
145 |
-
# text: Report text input through Gradio
|
146 |
-
|
147 |
-
# Returns:
|
148 |
-
# tuple: (text, text_results_html, entities_plot_html)
|
149 |
-
# """
|
150 |
-
# try:
|
151 |
-
# # Ensure models are loaded
|
152 |
-
# if not self.load_models() or self.text_model is None:
|
153 |
-
# return text, "Error: Models not loaded properly.", None
|
154 |
-
|
155 |
-
# # Check for empty text
|
156 |
-
# if not text or len(text.strip()) < 10:
|
157 |
-
# return (
|
158 |
-
# text,
|
159 |
-
# "Error: Please enter a valid medical report text (at least 10 characters).",
|
160 |
-
# None,
|
161 |
-
# )
|
162 |
-
|
163 |
-
# # Normalize text
|
164 |
-
# normalized_text = normalize_report_text(text)
|
165 |
-
|
166 |
-
# # Run text analysis
|
167 |
-
# self.logger.info("Analyzing medical report text")
|
168 |
-
# results = self.text_model.analyze(normalized_text)
|
169 |
-
|
170 |
-
# # Get entities and create visualization
|
171 |
-
# entities = results.get("entities", {})
|
172 |
-
# fig = plot_report_entities(normalized_text, entities)
|
173 |
-
|
174 |
-
# # Convert to HTML for display
|
175 |
-
# entities_plot_html = self.fig_to_html(fig)
|
176 |
-
|
177 |
-
# # Format results as HTML
|
178 |
-
# html_result = f"""
|
179 |
-
# <h2>Medical Report Analysis Results</h2>
|
180 |
-
# <p><strong>Severity Level:</strong> {results.get("severity", {}).get("level", "Unknown")}</p>
|
181 |
-
# <p><strong>Severity Score:</strong> {results.get("severity", {}).get("score", 0)}/4</p>
|
182 |
-
# <p><strong>Confidence:</strong> {results.get("severity", {}).get("confidence", 0):.1%}</p>
|
183 |
-
|
184 |
-
# <h3>Key Findings:</h3>
|
185 |
-
# <ul>
|
186 |
-
# """
|
187 |
-
|
188 |
-
# # Add findings
|
189 |
-
# findings = results.get("findings", [])
|
190 |
-
# if findings:
|
191 |
-
# for finding in findings:
|
192 |
-
# html_result += f"<li>{finding}</li>"
|
193 |
-
# else:
|
194 |
-
# html_result += "<li>No specific findings detailed.</li>"
|
195 |
-
|
196 |
-
# html_result += "</ul>"
|
197 |
-
|
198 |
-
# # Add entities
|
199 |
-
# html_result += "<h3>Extracted Medical Entities:</h3>"
|
200 |
-
|
201 |
-
# for category, items in entities.items():
|
202 |
-
# if items:
|
203 |
-
# html_result += f"<p><strong>{category.capitalize()}:</strong> {', '.join(items)}</p>"
|
204 |
-
|
205 |
-
# # Add follow-up recommendations
|
206 |
-
# html_result += "<h3>Follow-up Recommendations:</h3><ul>"
|
207 |
-
# followups = results.get("followup_recommendations", [])
|
208 |
-
|
209 |
-
# if followups:
|
210 |
-
# for rec in followups:
|
211 |
-
# html_result += f"<li>{rec}</li>"
|
212 |
-
# else:
|
213 |
-
# html_result += "<li>No specific follow-up recommendations.</li>"
|
214 |
-
|
215 |
-
# html_result += "</ul>"
|
216 |
-
|
217 |
-
# return text, html_result, entities_plot_html
|
218 |
-
|
219 |
-
# except Exception as e:
|
220 |
-
# self.logger.error(f"Error in text analysis: {e}")
|
221 |
-
# return text, f"Error analyzing text: {str(e)}", None
|
222 |
-
|
223 |
-
# def analyze_multimodal(self, image, text):
|
224 |
-
# """
|
225 |
-
# Perform multimodal analysis of image and text.
|
226 |
-
|
227 |
-
# Args:
|
228 |
-
# image: Image file uploaded through Gradio
|
229 |
-
# text: Report text input through Gradio
|
230 |
-
|
231 |
-
# Returns:
|
232 |
-
# tuple: (results_html, multimodal_plot_html)
|
233 |
-
# """
|
234 |
-
# try:
|
235 |
-
# # Ensure models are loaded
|
236 |
-
# if not self.load_models() or self.fusion_model is None:
|
237 |
-
# return "Error: Models not loaded properly.", None
|
238 |
-
|
239 |
-
# # Check for empty inputs
|
240 |
-
# if image is None:
|
241 |
-
# return "Error: Please upload an X-ray image for analysis.", None
|
242 |
-
|
243 |
-
# if not text or len(text.strip()) < 10:
|
244 |
-
# return (
|
245 |
-
# "Error: Please enter a valid medical report text (at least 10 characters).",
|
246 |
-
# None,
|
247 |
-
# )
|
248 |
-
|
249 |
-
# # Save uploaded image to a temporary file
|
250 |
-
# temp_dir = tempfile.mkdtemp()
|
251 |
-
# temp_path = os.path.join(temp_dir, "upload.png")
|
252 |
-
|
253 |
-
# if isinstance(image, str):
|
254 |
-
# # Copy the file if it's a path
|
255 |
-
# from shutil import copyfile
|
256 |
-
|
257 |
-
# copyfile(image, temp_path)
|
258 |
-
# else:
|
259 |
-
# # Save if it's a Gradio UploadButton image
|
260 |
-
# image.save(temp_path)
|
261 |
-
|
262 |
-
# # Normalize text
|
263 |
-
# normalized_text = normalize_report_text(text)
|
264 |
-
|
265 |
-
# # Run multimodal analysis
|
266 |
-
# self.logger.info("Performing multimodal analysis")
|
267 |
-
# results = self.fusion_model.analyze(temp_path, normalized_text)
|
268 |
-
|
269 |
-
# # Create visualization
|
270 |
-
# fig = plot_multimodal_results(results, image, text)
|
271 |
-
|
272 |
-
# # Convert to HTML for display
|
273 |
-
# plot_html = self.fig_to_html(fig)
|
274 |
-
|
275 |
-
# # Generate explanation
|
276 |
-
# explanation = self.fusion_model.get_explanation(results)
|
277 |
-
|
278 |
-
# # Format results as HTML
|
279 |
-
# html_result = f"""
|
280 |
-
# <h2>Multimodal Medical Analysis Results</h2>
|
281 |
-
|
282 |
-
# <h3>Overview</h3>
|
283 |
-
# <p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>
|
284 |
-
# <p><strong>Severity Level:</strong> {results.get("severity", {}).get("level", "Unknown")}</p>
|
285 |
-
# <p><strong>Severity Score:</strong> {results.get("severity", {}).get("score", 0)}/4</p>
|
286 |
-
# <p><strong>Agreement Score:</strong> {results.get("agreement_score", 0):.0%}</p>
|
287 |
-
|
288 |
-
# <h3>Detailed Findings</h3>
|
289 |
-
# <ul>
|
290 |
-
# """
|
291 |
-
|
292 |
-
# # Add findings
|
293 |
-
# findings = results.get("findings", [])
|
294 |
-
# if findings:
|
295 |
-
# for finding in findings:
|
296 |
-
# html_result += f"<li>{finding}</li>"
|
297 |
-
# else:
|
298 |
-
# html_result += "<li>No specific findings detailed.</li>"
|
299 |
-
|
300 |
-
# html_result += "</ul>"
|
301 |
-
|
302 |
-
# # Add follow-up recommendations
|
303 |
-
# html_result += "<h3>Recommended Follow-up</h3><ul>"
|
304 |
-
# followups = results.get("followup_recommendations", [])
|
305 |
-
|
306 |
-
# if followups:
|
307 |
-
# for rec in followups:
|
308 |
-
# html_result += f"<li>{rec}</li>"
|
309 |
-
# else:
|
310 |
-
# html_result += (
|
311 |
-
# "<li>No specific follow-up recommendations provided.</li>"
|
312 |
-
# )
|
313 |
-
|
314 |
-
# html_result += "</ul>"
|
315 |
-
|
316 |
-
# # Add confidence note
|
317 |
-
# confidence = results.get("severity", {}).get("confidence", 0)
|
318 |
-
# html_result += f"""
|
319 |
-
# <p><em>Note: This analysis has a confidence level of {confidence:.0%}.
|
320 |
-
# Please consult with healthcare professionals for official diagnosis.</em></p>
|
321 |
-
# """
|
322 |
-
|
323 |
-
# return html_result, plot_html
|
324 |
-
|
325 |
-
# except Exception as e:
|
326 |
-
# self.logger.error(f"Error in multimodal analysis: {e}")
|
327 |
-
# return f"Error in multimodal analysis: {str(e)}", None
|
328 |
-
|
329 |
-
# def enhance_image(self, image):
|
330 |
-
# """
|
331 |
-
# Enhance X-ray image contrast.
|
332 |
-
|
333 |
-
# Args:
|
334 |
-
# image: Image file uploaded through Gradio
|
335 |
-
|
336 |
-
# Returns:
|
337 |
-
# PIL.Image: Enhanced image
|
338 |
-
# """
|
339 |
-
# try:
|
340 |
-
# if image is None:
|
341 |
-
# return None
|
342 |
-
|
343 |
-
# # Save uploaded image to a temporary file
|
344 |
-
# temp_dir = tempfile.mkdtemp()
|
345 |
-
# temp_path = os.path.join(temp_dir, "upload.png")
|
346 |
-
|
347 |
-
# if isinstance(image, str):
|
348 |
-
# # Copy the file if it's a path
|
349 |
-
# from shutil import copyfile
|
350 |
-
|
351 |
-
# copyfile(image, temp_path)
|
352 |
-
# else:
|
353 |
-
# # Save if it's a Gradio UploadButton image
|
354 |
-
# image.save(temp_path)
|
355 |
-
|
356 |
-
# # Enhance image
|
357 |
-
# self.logger.info(f"Enhancing image: {temp_path}")
|
358 |
-
# output_path = os.path.join(temp_dir, "enhanced.png")
|
359 |
-
# enhance_xray_image(temp_path, output_path)
|
360 |
-
|
361 |
-
# # Load enhanced image
|
362 |
-
# enhanced = Image.open(output_path)
|
363 |
-
# return enhanced
|
364 |
-
|
365 |
-
# except Exception as e:
|
366 |
-
# self.logger.error(f"Error enhancing image: {e}")
|
367 |
-
# return image # Return original image on error
|
368 |
-
|
369 |
-
# def fig_to_html(self, fig):
|
370 |
-
# """Convert matplotlib figure to HTML for display in Gradio."""
|
371 |
-
# try:
|
372 |
-
# import base64
|
373 |
-
# import io
|
374 |
-
|
375 |
-
# buf = io.BytesIO()
|
376 |
-
# fig.savefig(buf, format="png", bbox_inches="tight")
|
377 |
-
# buf.seek(0)
|
378 |
-
# img_str = base64.b64encode(buf.read()).decode("utf-8")
|
379 |
-
# plt.close(fig)
|
380 |
-
|
381 |
-
# return f'<img src="data:image/png;base64,{img_str}" alt="Analysis Plot">'
|
382 |
-
|
383 |
-
# except Exception as e:
|
384 |
-
# self.logger.error(f"Error converting figure to HTML: {e}")
|
385 |
-
# return "<p>Error displaying visualization.</p>"
|
386 |
-
import logging
|
387 |
-
import os
|
388 |
-
import sys
|
389 |
-
import tempfile
|
390 |
-
from pathlib import Path
|
391 |
import requests
|
392 |
import gradio as gr
|
393 |
import matplotlib.pyplot as plt
|
@@ -503,7 +118,10 @@ class MediSyncApp:
|
|
503 |
|
504 |
html_result = f"""
|
505 |
<div class="medisync-card medisync-card-bg medisync-force-text">
|
506 |
-
<h2 class="medisync-title medisync-blue">
|
|
|
|
|
|
|
507 |
<p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>
|
508 |
<p><strong>Confidence:</strong> {results.get("confidence", 0):.1%}</p>
|
509 |
<p><strong>Abnormality Detected:</strong> {"Yes" if results.get("has_abnormality", False) else "No"}</p>
|
@@ -550,7 +168,10 @@ class MediSyncApp:
|
|
550 |
entities_plot_html = self.fig_to_html(fig)
|
551 |
html_result = f"""
|
552 |
<div class="medisync-card medisync-card-bg medisync-force-text">
|
553 |
-
<h2 class="medisync-title medisync-green">
|
|
|
|
|
|
|
554 |
<p><strong>Severity Level:</strong> {results.get("severity", {}).get("level", "Unknown")}</p>
|
555 |
<p><strong>Severity Score:</strong> {results.get("severity", {}).get("score", 0)}/4</p>
|
556 |
<p><strong>Confidence:</strong> {results.get("severity", {}).get("confidence", 0):.1%}</p>
|
@@ -617,7 +238,10 @@ class MediSyncApp:
|
|
617 |
explanation = self.fusion_model.get_explanation(results)
|
618 |
html_result = f"""
|
619 |
<div class="medisync-card medisync-card-bg medisync-force-text">
|
620 |
-
<h2 class="medisync-title medisync-purple">
|
|
|
|
|
|
|
621 |
<h3>Overview</h3>
|
622 |
<p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>
|
623 |
<p><strong>Severity Level:</strong> {results.get("severity", {}).get("level", "Unknown")}</p>
|
@@ -772,8 +396,14 @@ def create_interface():
|
|
772 |
color: var(--body-text-color, #222);
|
773 |
}
|
774 |
.medisync-title {
|
775 |
-
font-weight:
|
|
|
776 |
margin-bottom: 0.7em;
|
|
|
|
|
|
|
|
|
|
|
777 |
}
|
778 |
.medisync-blue { color: #00bfae; }
|
779 |
.medisync-green { color: #28a745; }
|
@@ -810,6 +440,7 @@ def create_interface():
|
|
810 |
/* Responsive tweaks */
|
811 |
@media (max-width: 900px) {
|
812 |
.medisync-card { padding: 16px 8px 12px 8px; }
|
|
|
813 |
}
|
814 |
/* Ensure text is visible in dark mode */
|
815 |
html[data-theme="dark"] .medisync-card-bg,
|
@@ -819,6 +450,7 @@ def create_interface():
|
|
819 |
}
|
820 |
html[data-theme="dark"] .medisync-title {
|
821 |
color: #00bfae !important;
|
|
|
822 |
}
|
823 |
html[data-theme="dark"] .medisync-blue { color: #00bfae !important; }
|
824 |
html[data-theme="dark"] .medisync-green { color: #00e676 !important; }
|
@@ -837,17 +469,19 @@ def create_interface():
|
|
837 |
html[data-theme="dark"] .medisync-force-text, html[data-theme="dark"] .medisync-force-text * {
|
838 |
color: #f8fafc !important;
|
839 |
}
|
840 |
-
/* End consultation status output force text color */
|
841 |
#end_consultation_status, #end_consultation_status * {
|
842 |
color: var(--body-text-color, #222) !important;
|
|
|
843 |
}
|
844 |
html[data-theme="dark"] #end_consultation_status, html[data-theme="dark"] #end_consultation_status * {
|
845 |
color: #f8fafc !important;
|
|
|
846 |
}
|
847 |
/* Style for the popup/status after end consultation for visibility */
|
848 |
#end_consultation_status, #end_consultation_status * {
|
849 |
-
font-size: 1.
|
850 |
-
font-weight:
|
851 |
}
|
852 |
html[data-theme="dark"] #end_consultation_status, html[data-theme="dark"] #end_consultation_status * {
|
853 |
color: #f8fafc !important;
|
@@ -871,18 +505,22 @@ def create_interface():
|
|
871 |
) as interface:
|
872 |
gr.Markdown(
|
873 |
"""
|
874 |
-
<div style="display: flex; align-items: center; gap:
|
875 |
-
<img src="https://cdn.jsdelivr.net/gh/saqib-ali-buriro/medivance-assets/medivance_logo.png" alt="Medivance Logo" style="height:
|
876 |
-
<span style="font-size: 2.
|
|
|
|
|
|
|
|
|
877 |
</div>
|
878 |
-
<div style="font-size: 1.
|
879 |
<span style="color: var(--body-text-color, #222);">AI-powered Multi-Modal Medical Analysis System</span>
|
880 |
</div>
|
881 |
-
<div style="font-size: 1.
|
882 |
<span style="color: var(--body-text-color, #222);">Seamlessly analyze X-ray images and medical reports for comprehensive healthcare insights.</span>
|
883 |
</div>
|
884 |
<div style="margin-bottom: 1.2em;">
|
885 |
-
<ul style="font-size: 1.
|
886 |
<li>Upload a chest X-ray image</li>
|
887 |
<li>Enter the corresponding medical report text</li>
|
888 |
<li>Choose the analysis type: <b>Image</b>, <b>Text</b>, or <b>Multimodal</b></li>
|
@@ -988,7 +626,10 @@ def create_interface():
|
|
988 |
gr.Markdown(
|
989 |
"""
|
990 |
<div class="medisync-card medisync-card-bg medisync-force-text">
|
991 |
-
<h2 class="medisync-title medisync-blue">
|
|
|
|
|
|
|
992 |
<p>
|
993 |
<b>MediSync</b> is an AI-powered healthcare solution that uses multi-modal analysis to provide comprehensive insights from medical images and reports.
|
994 |
</p>
|
@@ -1033,15 +674,16 @@ def create_interface():
|
|
1033 |
)
|
1034 |
|
1035 |
def handle_end_consultation(appointment_id):
|
|
|
1036 |
if not appointment_id or appointment_id.strip() == "":
|
1037 |
-
return "<div class='medisync-force-text' style='color: #dc3545; padding: 10px; background-color: #ffe6e6; border-radius: 5px;'>Please enter your appointment ID first.</div>"
|
1038 |
result = complete_appointment(appointment_id.strip())
|
1039 |
if result["status"] == "success":
|
1040 |
doctors_urls = get_doctors_page_urls()
|
1041 |
html_response = f"""
|
1042 |
-
<div class='medisync-force-text' style='color: #28a745; padding: 15px; background-color: #e6ffe6; border-radius: 5px; margin: 10px 0;">
|
1043 |
<h3 style="color: #28a745;">✅ Consultation Completed Successfully!</h3>
|
1044 |
-
<p style="color: var(--body-text-color, #222);"
|
1045 |
<p style="color: var(--body-text-color, #222);">Your appointment has been marked as completed.</p>
|
1046 |
<button onclick="window.open('{doctors_urls['local']}', '_blank')"
|
1047 |
style="background-color: #00bfae; color: white; padding: 8px 18px; border: none; border-radius: 6px; cursor: pointer; margin-top: 10px;">
|
@@ -1056,7 +698,7 @@ def create_interface():
|
|
1056 |
else:
|
1057 |
if "Cannot connect to Flask app" in result['message']:
|
1058 |
html_response = f"""
|
1059 |
-
<div class='medisync-force-text' style='color: #ff9800; padding: 15px; background-color: #fff3cd; border-radius: 5px; margin: 10px 0;">
|
1060 |
<h3 style="color: #ff9800;">⚠️ Consultation Ready to Complete</h3>
|
1061 |
<p style="color: var(--body-text-color, #222);">Your consultation analysis is complete! However, we cannot automatically mark your appointment as completed because the Flask app is not accessible from this environment.</p>
|
1062 |
<p style="color: var(--body-text-color, #222);"><strong>Appointment ID:</strong> {appointment_id.strip()}</p>
|
@@ -1084,7 +726,7 @@ def create_interface():
|
|
1084 |
"""
|
1085 |
else:
|
1086 |
html_response = f"""
|
1087 |
-
<div class='medisync-force-text' style='color: #dc3545; padding: 15px; background-color: #ffe6e6; border-radius: 5px; margin: 10px 0;">
|
1088 |
<h3 style="color: #dc3545;">❌ Error Completing Consultation</h3>
|
1089 |
<p style="color: var(--body-text-color, #222);">{result['message']}</p>
|
1090 |
<p style="color: var(--body-text-color, #222);">Please try again or contact support if the problem persists.</p>
|
|
|
3 |
import sys
|
4 |
import tempfile
|
5 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import requests
|
7 |
import gradio as gr
|
8 |
import matplotlib.pyplot as plt
|
|
|
118 |
|
119 |
html_result = f"""
|
120 |
<div class="medisync-card medisync-card-bg medisync-force-text">
|
121 |
+
<h2 class="medisync-title medisync-blue">
|
122 |
+
<img src="https://cdn.jsdelivr.net/gh/saqib-ali-buriro/medivance-assets/xray_icon.png" alt="X-ray" style="height:32px;vertical-align:middle;margin-right:10px;">
|
123 |
+
<span style="font-size:1.45em; font-weight:900; letter-spacing:1px; text-shadow:0 2px 8px #00bfae33;">X-ray Analysis Results</span>
|
124 |
+
</h2>
|
125 |
<p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>
|
126 |
<p><strong>Confidence:</strong> {results.get("confidence", 0):.1%}</p>
|
127 |
<p><strong>Abnormality Detected:</strong> {"Yes" if results.get("has_abnormality", False) else "No"}</p>
|
|
|
168 |
entities_plot_html = self.fig_to_html(fig)
|
169 |
html_result = f"""
|
170 |
<div class="medisync-card medisync-card-bg medisync-force-text">
|
171 |
+
<h2 class="medisync-title medisync-green">
|
172 |
+
<img src="https://cdn.jsdelivr.net/gh/saqib-ali-buriro/medivance-assets/report_icon.png" alt="Report" style="height:32px;vertical-align:middle;margin-right:10px;">
|
173 |
+
<span style="font-size:1.45em; font-weight:900; letter-spacing:1px; text-shadow:0 2px 8px #28a74533;">Text Analysis Results</span>
|
174 |
+
</h2>
|
175 |
<p><strong>Severity Level:</strong> {results.get("severity", {}).get("level", "Unknown")}</p>
|
176 |
<p><strong>Severity Score:</strong> {results.get("severity", {}).get("score", 0)}/4</p>
|
177 |
<p><strong>Confidence:</strong> {results.get("severity", {}).get("confidence", 0):.1%}</p>
|
|
|
238 |
explanation = self.fusion_model.get_explanation(results)
|
239 |
html_result = f"""
|
240 |
<div class="medisync-card medisync-card-bg medisync-force-text">
|
241 |
+
<h2 class="medisync-title medisync-purple">
|
242 |
+
<img src="https://cdn.jsdelivr.net/gh/saqib-ali-buriro/medivance-assets/multimodal_icon.png" alt="Multimodal" style="height:32px;vertical-align:middle;margin-right:10px;">
|
243 |
+
<span style="font-size:1.45em; font-weight:900; letter-spacing:1px; text-shadow:0 2px 8px #6c63ff33;">Multimodal Analysis Results</span>
|
244 |
+
</h2>
|
245 |
<h3>Overview</h3>
|
246 |
<p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>
|
247 |
<p><strong>Severity Level:</strong> {results.get("severity", {}).get("level", "Unknown")}</p>
|
|
|
396 |
color: var(--body-text-color, #222);
|
397 |
}
|
398 |
.medisync-title {
|
399 |
+
font-weight: 900;
|
400 |
+
font-size: 1.45em;
|
401 |
margin-bottom: 0.7em;
|
402 |
+
letter-spacing: 1px;
|
403 |
+
text-shadow: 0 2px 8px #00bfae33, 0 1px 0 #fff;
|
404 |
+
display: flex;
|
405 |
+
align-items: center;
|
406 |
+
gap: 10px;
|
407 |
}
|
408 |
.medisync-blue { color: #00bfae; }
|
409 |
.medisync-green { color: #28a745; }
|
|
|
440 |
/* Responsive tweaks */
|
441 |
@media (max-width: 900px) {
|
442 |
.medisync-card { padding: 16px 8px 12px 8px; }
|
443 |
+
.medisync-title { font-size: 1.1em; }
|
444 |
}
|
445 |
/* Ensure text is visible in dark mode */
|
446 |
html[data-theme="dark"] .medisync-card-bg,
|
|
|
450 |
}
|
451 |
html[data-theme="dark"] .medisync-title {
|
452 |
color: #00bfae !important;
|
453 |
+
text-shadow: 0 2px 8px #00bfae33, 0 1px 0 #23272f;
|
454 |
}
|
455 |
html[data-theme="dark"] .medisync-blue { color: #00bfae !important; }
|
456 |
html[data-theme="dark"] .medisync-green { color: #00e676 !important; }
|
|
|
469 |
html[data-theme="dark"] .medisync-force-text, html[data-theme="dark"] .medisync-force-text * {
|
470 |
color: #f8fafc !important;
|
471 |
}
|
472 |
+
/* End consultation status output force text color and background for visibility */
|
473 |
#end_consultation_status, #end_consultation_status * {
|
474 |
color: var(--body-text-color, #222) !important;
|
475 |
+
background: #fff !important;
|
476 |
}
|
477 |
html[data-theme="dark"] #end_consultation_status, html[data-theme="dark"] #end_consultation_status * {
|
478 |
color: #f8fafc !important;
|
479 |
+
background: #23272f !important;
|
480 |
}
|
481 |
/* Style for the popup/status after end consultation for visibility */
|
482 |
#end_consultation_status, #end_consultation_status * {
|
483 |
+
font-size: 1.12rem !important;
|
484 |
+
font-weight: 600 !important;
|
485 |
}
|
486 |
html[data-theme="dark"] #end_consultation_status, html[data-theme="dark"] #end_consultation_status * {
|
487 |
color: #f8fafc !important;
|
|
|
505 |
) as interface:
|
506 |
gr.Markdown(
|
507 |
"""
|
508 |
+
<div style="display: flex; align-items: center; gap: 18px; margin-bottom: 0.5em;">
|
509 |
+
<img src="https://cdn.jsdelivr.net/gh/saqib-ali-buriro/medivance-assets/medivance_logo.png" alt="Medivance Logo" style="height: 48px; border-radius: 10px; background: #fff; box-shadow: 0 2px 8px 0 rgba(26,115,232,0.10);">
|
510 |
+
<span style="font-size: 2.4rem; font-weight: 900; color: #00bfae; letter-spacing: 1.5px; text-shadow: 0 2px 8px #00bfae33, 0 1px 0 #fff;">
|
511 |
+
MediSync
|
512 |
+
<img src="https://cdn.jsdelivr.net/gh/saqib-ali-buriro/medivance-assets/ai_heartbeat.png" alt="AI Heartbeat" style="height: 32px; vertical-align: middle; margin-left: 8px;">
|
513 |
+
</span>
|
514 |
+
<img src="https://cdn.jsdelivr.net/gh/saqib-ali-buriro/medivance-assets/doctor_icon.png" alt="Doctor" style="height: 38px; border-radius: 8px; background: #fff; box-shadow: 0 2px 8px 0 rgba(26,115,232,0.10); margin-left: 8px;">
|
515 |
</div>
|
516 |
+
<div style="font-size: 1.22rem; margin-bottom: 1.2em; font-weight: 600; color: #23272f;">
|
517 |
<span style="color: var(--body-text-color, #222);">AI-powered Multi-Modal Medical Analysis System</span>
|
518 |
</div>
|
519 |
+
<div style="font-size: 1.09rem; margin-bottom: 1.2em;">
|
520 |
<span style="color: var(--body-text-color, #222);">Seamlessly analyze X-ray images and medical reports for comprehensive healthcare insights.</span>
|
521 |
</div>
|
522 |
<div style="margin-bottom: 1.2em;">
|
523 |
+
<ul style="font-size: 1.04rem; color: var(--body-text-color, #222);">
|
524 |
<li>Upload a chest X-ray image</li>
|
525 |
<li>Enter the corresponding medical report text</li>
|
526 |
<li>Choose the analysis type: <b>Image</b>, <b>Text</b>, or <b>Multimodal</b></li>
|
|
|
626 |
gr.Markdown(
|
627 |
"""
|
628 |
<div class="medisync-card medisync-card-bg medisync-force-text">
|
629 |
+
<h2 class="medisync-title medisync-blue">
|
630 |
+
<img src="https://cdn.jsdelivr.net/gh/saqib-ali-buriro/medivance-assets/info_icon.png" alt="Info" style="height:32px;vertical-align:middle;margin-right:10px;">
|
631 |
+
<span style="font-size:1.45em; font-weight:900; letter-spacing:1px; text-shadow:0 2px 8px #00bfae33;">About MediSync</span>
|
632 |
+
</h2>
|
633 |
<p>
|
634 |
<b>MediSync</b> is an AI-powered healthcare solution that uses multi-modal analysis to provide comprehensive insights from medical images and reports.
|
635 |
</p>
|
|
|
674 |
)
|
675 |
|
676 |
def handle_end_consultation(appointment_id):
|
677 |
+
# Always force text color and background for visibility
|
678 |
if not appointment_id or appointment_id.strip() == "":
|
679 |
+
return "<div class='medisync-force-text' style='color: #dc3545; background: #fff; padding: 10px; background-color: #ffe6e6; border-radius: 5px;'>Please enter your appointment ID first.</div>"
|
680 |
result = complete_appointment(appointment_id.strip())
|
681 |
if result["status"] == "success":
|
682 |
doctors_urls = get_doctors_page_urls()
|
683 |
html_response = f"""
|
684 |
+
<div class='medisync-force-text' style='color: #28a745; background: #fff; padding: 15px; background-color: #e6ffe6; border-radius: 5px; margin: 10px 0;">
|
685 |
<h3 style="color: #28a745;">✅ Consultation Completed Successfully!</h3>
|
686 |
+
<p style="color: var(--body-text-color, #222);">✔️ {result['message']}</p>
|
687 |
<p style="color: var(--body-text-color, #222);">Your appointment has been marked as completed.</p>
|
688 |
<button onclick="window.open('{doctors_urls['local']}', '_blank')"
|
689 |
style="background-color: #00bfae; color: white; padding: 8px 18px; border: none; border-radius: 6px; cursor: pointer; margin-top: 10px;">
|
|
|
698 |
else:
|
699 |
if "Cannot connect to Flask app" in result['message']:
|
700 |
html_response = f"""
|
701 |
+
<div class='medisync-force-text' style='color: #ff9800; background: #fff; padding: 15px; background-color: #fff3cd; border-radius: 5px; margin: 10px 0;">
|
702 |
<h3 style="color: #ff9800;">⚠️ Consultation Ready to Complete</h3>
|
703 |
<p style="color: var(--body-text-color, #222);">Your consultation analysis is complete! However, we cannot automatically mark your appointment as completed because the Flask app is not accessible from this environment.</p>
|
704 |
<p style="color: var(--body-text-color, #222);"><strong>Appointment ID:</strong> {appointment_id.strip()}</p>
|
|
|
726 |
"""
|
727 |
else:
|
728 |
html_response = f"""
|
729 |
+
<div class='medisync-force-text' style='color: #dc3545; background: #fff; padding: 15px; background-color: #ffe6e6; border-radius: 5px; margin: 10px 0;">
|
730 |
<h3 style="color: #dc3545;">❌ Error Completing Consultation</h3>
|
731 |
<p style="color: var(--body-text-color, #222);">{result['message']}</p>
|
732 |
<p style="color: var(--body-text-color, #222);">Please try again or contact support if the problem persists.</p>
|