updated code UI ✅✅
Browse files- mediSync/app.py +263 -346
mediSync/app.py
CHANGED
@@ -8,7 +8,51 @@ import gradio as gr
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
from PIL import Image
|
10 |
|
11 |
-
# Import configuration for end consultation logic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
try:
|
13 |
from .config import get_flask_urls, get_doctors_page_urls, TIMEOUT_SETTINGS
|
14 |
except ImportError:
|
@@ -26,20 +70,9 @@ except ImportError:
|
|
26 |
}
|
27 |
TIMEOUT_SETTINGS = {"connection_timeout": 5, "request_timeout": 10}
|
28 |
|
29 |
-
# Add parent directory to path
|
30 |
parent_dir = os.path.dirname(os.path.abspath(__file__))
|
31 |
sys.path.append(parent_dir)
|
32 |
|
33 |
-
# Import our modules for model and utility logic
|
34 |
-
from models.multimodal_fusion import MultimodalFusion
|
35 |
-
from utils.preprocessing import enhance_xray_image, normalize_report_text
|
36 |
-
from utils.visualization import (
|
37 |
-
plot_image_prediction,
|
38 |
-
plot_multimodal_results,
|
39 |
-
plot_report_entities,
|
40 |
-
)
|
41 |
-
|
42 |
-
# Set up logging
|
43 |
logging.basicConfig(
|
44 |
level=logging.INFO,
|
45 |
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
@@ -47,277 +80,224 @@ logging.basicConfig(
|
|
47 |
)
|
48 |
logger = logging.getLogger(__name__)
|
49 |
|
50 |
-
# Ensure sample data directory exists
|
51 |
-
os.makedirs(os.path.join(parent_dir, "data", "sample"), exist_ok=True)
|
52 |
-
|
53 |
class MediSyncApp:
|
54 |
-
"""
|
55 |
-
Main application class for the MediSync multi-modal medical analysis system.
|
56 |
-
"""
|
57 |
-
|
58 |
def __init__(self):
|
59 |
-
"""Initialize the application and load models."""
|
60 |
self.logger = logging.getLogger(__name__)
|
61 |
self.logger.info("Initializing MediSync application")
|
|
|
62 |
self.fusion_model = None
|
63 |
self.image_model = None
|
64 |
self.text_model = None
|
65 |
|
66 |
-
def
|
67 |
-
|
68 |
-
Load models if not already loaded.
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
try:
|
74 |
-
|
75 |
-
|
76 |
-
self.fusion_model = MultimodalFusion()
|
77 |
-
self.image_model = self.fusion_model.image_analyzer
|
78 |
-
self.text_model = self.fusion_model.text_analyzer
|
79 |
-
self.logger.info("Models loaded successfully")
|
80 |
return True
|
81 |
except Exception as e:
|
82 |
self.logger.error(f"Error loading models: {e}")
|
83 |
return False
|
84 |
|
85 |
-
def
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
Args:
|
90 |
-
image: Image file uploaded through Gradio
|
91 |
-
|
92 |
-
Returns:
|
93 |
-
tuple: (image, image_results_html, plot_as_html)
|
94 |
-
"""
|
95 |
try:
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
temp_path = os.path.join(temp_dir, "upload.png")
|
103 |
-
if isinstance(image, str):
|
104 |
-
from shutil import copyfile
|
105 |
-
copyfile(image, temp_path)
|
106 |
-
else:
|
107 |
-
image.save(temp_path)
|
108 |
-
|
109 |
-
self.logger.info(f"Analyzing image: {temp_path}")
|
110 |
-
results = self.image_model.analyze(temp_path)
|
111 |
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
image,
|
114 |
results.get("predictions", []),
|
115 |
-
f"Primary Finding: {results.get('primary_finding', 'Unknown')}"
|
116 |
)
|
117 |
plot_html = self.fig_to_html(fig)
|
118 |
-
|
119 |
-
html_result =
|
120 |
-
<div class="medisync-card medisync-card-bg medisync-force-text">
|
121 |
-
<h2 class="medisync-title medisync-blue">
|
122 |
-
<b>X-ray Analysis Results</b>
|
123 |
-
</h2>
|
124 |
-
<p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>
|
125 |
-
<p><strong>Confidence:</strong> {results.get("confidence", 0):.1%}</p>
|
126 |
-
<p><strong>Abnormality Detected:</strong> {"Yes" if results.get("has_abnormality", False) else "No"}</p>
|
127 |
-
<h3>Top Predictions:</h3>
|
128 |
-
<ul>
|
129 |
-
"""
|
130 |
-
for label, prob in results.get("predictions", [])[:5]:
|
131 |
-
html_result += f"<li>{label}: {prob:.1%}</li>"
|
132 |
-
html_result += "</ul>"
|
133 |
-
explanation = self.image_model.get_explanation(results)
|
134 |
-
html_result += f"<h3>Analysis Explanation:</h3><p>{explanation}</p>"
|
135 |
-
html_result += "</div>"
|
136 |
return image, html_result, plot_html
|
137 |
except Exception as e:
|
138 |
self.logger.error(f"Error in image analysis: {e}")
|
139 |
return image, f"Error analyzing image: {str(e)}", None
|
140 |
|
141 |
def analyze_text(self, text):
|
142 |
-
""
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
text: Report text input through Gradio
|
147 |
-
|
148 |
-
Returns:
|
149 |
-
tuple: (text, text_results_html, entities_plot_html)
|
150 |
-
"""
|
151 |
try:
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
self.
|
164 |
-
|
165 |
-
entities = results.get("entities", {})
|
166 |
-
fig = plot_report_entities(normalized_text, entities)
|
167 |
-
entities_plot_html = self.fig_to_html(fig)
|
168 |
-
html_result = f"""
|
169 |
-
<div class="medisync-card medisync-card-bg medisync-force-text">
|
170 |
-
<h2 class="medisync-title medisync-green">
|
171 |
-
<b>Text Analysis Results</b>
|
172 |
-
</h2>
|
173 |
-
<p><strong>Severity Level:</strong> {results.get("severity", {}).get("level", "Unknown")}</p>
|
174 |
-
<p><strong>Severity Score:</strong> {results.get("severity", {}).get("score", 0)}/4</p>
|
175 |
-
<p><strong>Confidence:</strong> {results.get("severity", {}).get("confidence", 0):.1%}</p>
|
176 |
-
<h3>Key Findings:</h3>
|
177 |
-
<ul>
|
178 |
-
"""
|
179 |
-
findings = results.get("findings", [])
|
180 |
-
if findings:
|
181 |
-
for finding in findings:
|
182 |
-
html_result += f"<li>{finding}</li>"
|
183 |
-
else:
|
184 |
-
html_result += "<li>No specific findings detailed.</li>"
|
185 |
-
html_result += "</ul>"
|
186 |
-
html_result += "<h3>Extracted Medical Entities:</h3>"
|
187 |
-
for category, items in entities.items():
|
188 |
-
if items:
|
189 |
-
html_result += f"<p><strong>{category.capitalize()}:</strong> {', '.join(items)}</p>"
|
190 |
-
html_result += "<h3>Follow-up Recommendations:</h3><ul>"
|
191 |
-
followups = results.get("followup_recommendations", [])
|
192 |
-
if followups:
|
193 |
-
for rec in followups:
|
194 |
-
html_result += f"<li>{rec}</li>"
|
195 |
-
else:
|
196 |
-
html_result += "<li>No specific follow-up recommendations.</li>"
|
197 |
-
html_result += "</ul></div>"
|
198 |
-
return text, html_result, entities_plot_html
|
199 |
except Exception as e:
|
200 |
self.logger.error(f"Error in text analysis: {e}")
|
201 |
return text, f"Error analyzing text: {str(e)}", None
|
202 |
|
203 |
def analyze_multimodal(self, image, text):
|
204 |
-
""
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
image: Image file uploaded through Gradio
|
209 |
-
text: Report text input through Gradio
|
210 |
-
|
211 |
-
Returns:
|
212 |
-
tuple: (results_html, multimodal_plot_html)
|
213 |
-
"""
|
214 |
try:
|
215 |
-
if not self.load_models() or self.fusion_model is None:
|
216 |
-
return "Error: Models not loaded properly.", None
|
217 |
-
if image is None:
|
218 |
-
return "Error: Please upload an X-ray image for analysis.", None
|
219 |
-
if not text or len(text.strip()) < 10:
|
220 |
-
return (
|
221 |
-
"Error: Please enter a valid medical report text (at least 10 characters).",
|
222 |
-
None,
|
223 |
-
)
|
224 |
-
temp_dir = tempfile.mkdtemp()
|
225 |
-
temp_path = os.path.join(temp_dir, "upload.png")
|
226 |
-
if isinstance(image, str):
|
227 |
-
from shutil import copyfile
|
228 |
-
copyfile(image, temp_path)
|
229 |
-
else:
|
230 |
-
image.save(temp_path)
|
231 |
-
normalized_text = normalize_report_text(text)
|
232 |
self.logger.info("Performing multimodal analysis")
|
233 |
-
results =
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
<p><strong>Severity Score:</strong> {results.get("severity", {}).get("score", 0)}/4</p>
|
246 |
-
<p><strong>Agreement Score:</strong> {results.get("agreement_score", 0):.0%}</p>
|
247 |
-
<h3>Detailed Findings</h3>
|
248 |
-
<ul>
|
249 |
-
"""
|
250 |
-
findings = results.get("findings", [])
|
251 |
-
if findings:
|
252 |
-
for finding in findings:
|
253 |
-
html_result += f"<li>{finding}</li>"
|
254 |
-
else:
|
255 |
-
html_result += "<li>No specific findings detailed.</li>"
|
256 |
-
html_result += "</ul>"
|
257 |
-
html_result += "<h3>Recommended Follow-up</h3><ul>"
|
258 |
-
followups = results.get("followup_recommendations", [])
|
259 |
-
if followups:
|
260 |
-
for rec in followups:
|
261 |
-
html_result += f"<li>{rec}</li>"
|
262 |
-
else:
|
263 |
-
html_result += "<li>No specific follow-up recommendations provided.</li>"
|
264 |
-
html_result += "</ul>"
|
265 |
-
confidence = results.get("severity", {}).get("confidence", 0)
|
266 |
-
html_result += f"""
|
267 |
-
<p><em>Note: This analysis has a confidence level of {confidence:.0%}.
|
268 |
-
Please consult with healthcare professionals for official diagnosis.</em></p>
|
269 |
-
<h3>Analysis Explanation:</h3>
|
270 |
-
<p>{explanation}</p>
|
271 |
-
</div>
|
272 |
-
"""
|
273 |
return html_result, plot_html
|
274 |
except Exception as e:
|
275 |
self.logger.error(f"Error in multimodal analysis: {e}")
|
276 |
return f"Error in multimodal analysis: {str(e)}", None
|
277 |
|
278 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
"""
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
|
|
|
|
|
|
|
|
|
|
287 |
"""
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
def fig_to_html(self, fig):
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
plt.close(fig)
|
317 |
-
return f'<img src="data:image/png;base64,{img_str}" style="max-width: 100%; height: auto; background: transparent;"/>'
|
318 |
-
except Exception as e:
|
319 |
-
self.logger.error(f"Error converting figure to HTML: {e}")
|
320 |
-
return "<p>Error displaying visualization.</p>"
|
321 |
|
322 |
def complete_appointment(appointment_id):
|
323 |
try:
|
@@ -352,7 +332,6 @@ def complete_appointment(appointment_id):
|
|
352 |
return {"status": "error", "message": f"Error: {str(e)}"}
|
353 |
|
354 |
def create_interface():
|
355 |
-
import urllib.parse
|
356 |
app = MediSyncApp()
|
357 |
example_report = """
|
358 |
CHEST X-RAY EXAMINATION
|
@@ -378,7 +357,7 @@ def create_interface():
|
|
378 |
|
379 |
with gr.Blocks(
|
380 |
title="MediSync: Multi-Modal Medical Analysis System",
|
381 |
-
theme=gr.themes.Default(),
|
382 |
css="""
|
383 |
/* Modern neumorphic card style for all result containers */
|
384 |
.medisync-card {
|
@@ -394,12 +373,8 @@ def create_interface():
|
|
394 |
color: var(--body-text-color, #222);
|
395 |
}
|
396 |
.medisync-title {
|
397 |
-
font-weight:
|
398 |
-
font-size: 1.45em;
|
399 |
margin-bottom: 0.7em;
|
400 |
-
letter-spacing: 1px;
|
401 |
-
text-shadow: 0 2px 8px #00bfae33, 0 1px 0 #fff;
|
402 |
-
/* Remove display:flex and gap for simple bold text */
|
403 |
}
|
404 |
.medisync-blue { color: #00bfae; }
|
405 |
.medisync-green { color: #28a745; }
|
@@ -414,10 +389,7 @@ def create_interface():
|
|
414 |
.gr-button, .end-consultation-btn {
|
415 |
border-radius: 8px !important;
|
416 |
font-weight: 600 !important;
|
417 |
-
font-size:
|
418 |
-
padding: 8px 18px !important;
|
419 |
-
min-width: 120px !important;
|
420 |
-
min-height: 38px !important;
|
421 |
transition: background 0.2s, color 0.2s;
|
422 |
}
|
423 |
.end-consultation-btn {
|
@@ -425,10 +397,6 @@ def create_interface():
|
|
425 |
border: none !important;
|
426 |
color: #fff !important;
|
427 |
box-shadow: 0 2px 8px 0 rgba(220,53,69,0.10);
|
428 |
-
font-size: 1.05rem !important;
|
429 |
-
padding: 10px 24px !important;
|
430 |
-
min-width: 160px !important;
|
431 |
-
min-height: 40px !important;
|
432 |
}
|
433 |
.end-consultation-btn:hover {
|
434 |
background: linear-gradient(90deg, #c82333 60%, #ff7675 100%) !important;
|
@@ -436,17 +404,14 @@ def create_interface():
|
|
436 |
/* Responsive tweaks */
|
437 |
@media (max-width: 900px) {
|
438 |
.medisync-card { padding: 16px 8px 12px 8px; }
|
439 |
-
.medisync-title { font-size: 1.1em; }
|
440 |
}
|
441 |
/* Ensure text is visible in dark mode */
|
442 |
-
html[data-theme="dark"] .medisync-card-bg
|
443 |
-
html[data-theme="dark"] .medisync-card-bg.medisync-force-text {
|
444 |
background: #23272f !important;
|
445 |
color: #f8fafc !important;
|
446 |
}
|
447 |
html[data-theme="dark"] .medisync-title {
|
448 |
color: #00bfae !important;
|
449 |
-
text-shadow: 0 2px 8px #00bfae33, 0 1px 0 #23272f;
|
450 |
}
|
451 |
html[data-theme="dark"] .medisync-blue { color: #00bfae !important; }
|
452 |
html[data-theme="dark"] .medisync-green { color: #00e676 !important; }
|
@@ -458,72 +423,22 @@ def create_interface():
|
|
458 |
html[data-theme="dark"] label, html[data-theme="dark"] .gr-label, html[data-theme="dark"] .gr-text, html[data-theme="dark"] .gr-html, html[data-theme="dark"] .gr-markdown {
|
459 |
color: #f8fafc !important;
|
460 |
}
|
461 |
-
/* Force all text in medisync-card and status outputs to be visible in all themes */
|
462 |
-
.medisync-force-text, .medisync-force-text * {
|
463 |
-
color: var(--body-text-color, #222) !important;
|
464 |
-
}
|
465 |
-
html[data-theme="dark"] .medisync-force-text, html[data-theme="dark"] .medisync-force-text * {
|
466 |
-
color: #f8fafc !important;
|
467 |
-
}
|
468 |
-
/* End consultation status output: remove color and theme, keep text black and simple */
|
469 |
-
#end_consultation_status, #end_consultation_status * {
|
470 |
-
color: #000 !important;
|
471 |
-
background: #fff !important;
|
472 |
-
font-size: 1.12rem !important;
|
473 |
-
font-weight: 600 !important;
|
474 |
-
}
|
475 |
-
/* Style the buttons inside the end consultation status popup */
|
476 |
-
#end_consultation_status button {
|
477 |
-
font-size: 1rem !important;
|
478 |
-
font-weight: 600 !important;
|
479 |
-
border-radius: 6px !important;
|
480 |
-
padding: 8px 18px !important;
|
481 |
-
margin-top: 8px !important;
|
482 |
-
margin-bottom: 4px !important;
|
483 |
-
min-width: 120px !important;
|
484 |
-
min-height: 36px !important;
|
485 |
-
box-shadow: 0 1.5px 4px 0 rgba(0,191,174,0.08);
|
486 |
-
}
|
487 |
-
#end_consultation_status button:active, #end_consultation_status button:focus {
|
488 |
-
outline: 2px solid #00bfae !important;
|
489 |
-
}
|
490 |
-
#end_consultation_status .btn-green {
|
491 |
-
background-color: #00bfae !important;
|
492 |
-
color: #fff !important;
|
493 |
-
}
|
494 |
-
#end_consultation_status .btn-purple {
|
495 |
-
background-color: #6c63ff !important;
|
496 |
-
color: #fff !important;
|
497 |
-
}
|
498 |
-
#end_consultation_status .btn-dark {
|
499 |
-
background-color: #23272f !important;
|
500 |
-
color: #fff !important;
|
501 |
-
}
|
502 |
-
#end_consultation_status .btn-orange {
|
503 |
-
background-color: #ff9800 !important;
|
504 |
-
color: #fff !important;
|
505 |
-
}
|
506 |
-
#end_consultation_status .btn-red {
|
507 |
-
background-color: #dc3545 !important;
|
508 |
-
color: #fff !important;
|
509 |
-
}
|
510 |
"""
|
511 |
) as interface:
|
512 |
gr.Markdown(
|
513 |
"""
|
514 |
-
<div style="margin-bottom: 0.5em;">
|
515 |
-
<
|
516 |
-
|
517 |
-
</span>
|
518 |
</div>
|
519 |
-
<div style="font-size: 1.
|
520 |
-
<span>AI-powered Multi-Modal Medical Analysis System</span>
|
521 |
</div>
|
522 |
-
<div style="font-size: 1.
|
523 |
-
<span>Seamlessly analyze X-ray images and medical reports for comprehensive healthcare insights.</span>
|
524 |
</div>
|
525 |
<div style="margin-bottom: 1.2em;">
|
526 |
-
<ul style="font-size: 1.
|
527 |
<li>Upload a chest X-ray image</li>
|
528 |
<li>Enter the corresponding medical report text</li>
|
529 |
<li>Choose the analysis type: <b>Image</b>, <b>Text</b>, or <b>Multimodal</b></li>
|
@@ -533,7 +448,7 @@ def create_interface():
|
|
533 |
""",
|
534 |
elem_id="medisync-header"
|
535 |
)
|
536 |
-
|
537 |
with gr.Row():
|
538 |
import urllib.parse
|
539 |
try:
|
@@ -558,7 +473,7 @@ def create_interface():
|
|
558 |
with gr.Row():
|
559 |
with gr.Column():
|
560 |
multi_img_input = gr.Image(label="Upload X-ray Image", type="pil", elem_id="multi_img_input")
|
561 |
-
multi_img_enhance = gr.Button("Enhance Image")
|
562 |
multi_text_input = gr.Textbox(
|
563 |
label="Enter Medical Report Text",
|
564 |
placeholder="Enter the radiologist's report text here...",
|
@@ -566,7 +481,7 @@ def create_interface():
|
|
566 |
value=example_report if sample_image_path is None else None,
|
567 |
elem_id="multi_text_input"
|
568 |
)
|
569 |
-
multi_analyze_btn = gr.Button("Analyze Image & Text", variant="primary")
|
570 |
with gr.Column():
|
571 |
multi_results = gr.HTML(label="Analysis Results", elem_id="multi_results")
|
572 |
multi_plot = gr.HTML(label="Visualization", elem_id="multi_plot")
|
@@ -581,8 +496,8 @@ def create_interface():
|
|
581 |
with gr.Row():
|
582 |
with gr.Column():
|
583 |
img_input = gr.Image(label="Upload X-ray Image", type="pil", elem_id="img_input")
|
584 |
-
img_enhance = gr.Button("Enhance Image")
|
585 |
-
img_analyze_btn = gr.Button("Analyze Image", variant="primary")
|
586 |
with gr.Column():
|
587 |
img_output = gr.Image(label="Processed Image", elem_id="img_output")
|
588 |
img_results = gr.HTML(label="Analysis Results", elem_id="img_results")
|
@@ -604,7 +519,7 @@ def create_interface():
|
|
604 |
value=example_report,
|
605 |
elem_id="text_input"
|
606 |
)
|
607 |
-
text_analyze_btn = gr.Button("Analyze Text", variant="primary")
|
608 |
with gr.Column():
|
609 |
text_output = gr.Textbox(label="Processed Text", elem_id="text_output")
|
610 |
text_results = gr.HTML(label="Analysis Results", elem_id="text_results")
|
@@ -621,17 +536,16 @@ def create_interface():
|
|
621 |
"End Consultation",
|
622 |
variant="stop",
|
623 |
size="lg",
|
624 |
-
elem_classes=["end-consultation-btn"]
|
|
|
625 |
)
|
626 |
end_consultation_status = gr.HTML(label="Status", elem_id="end_consultation_status")
|
627 |
|
628 |
with gr.Tab("ℹ️ About"):
|
629 |
gr.Markdown(
|
630 |
"""
|
631 |
-
<div class="medisync-card medisync-card-bg
|
632 |
-
<h2 class="medisync-title medisync-blue">
|
633 |
-
<b>About MediSync</b>
|
634 |
-
</h2>
|
635 |
<p>
|
636 |
<b>MediSync</b> is an AI-powered healthcare solution that uses multi-modal analysis to provide comprehensive insights from medical images and reports.
|
637 |
</p>
|
@@ -676,23 +590,22 @@ def create_interface():
|
|
676 |
)
|
677 |
|
678 |
def handle_end_consultation(appointment_id):
|
679 |
-
# Output status: styled with color for buttons and clear status box, as per template
|
680 |
if not appointment_id or appointment_id.strip() == "":
|
681 |
-
return "<div style='color: #
|
682 |
result = complete_appointment(appointment_id.strip())
|
683 |
if result["status"] == "success":
|
684 |
doctors_urls = get_doctors_page_urls()
|
685 |
html_response = f"""
|
686 |
-
<div style='color: #
|
687 |
-
<h3
|
688 |
-
<p
|
689 |
<p>Your appointment has been marked as completed.</p>
|
690 |
-
<button
|
691 |
-
style="margin-top: 10px;">
|
692 |
Return to Doctors Page (Local)
|
693 |
</button>
|
694 |
-
<button
|
695 |
-
style="margin-top: 10px; margin-left: 10px;">
|
696 |
Return to Doctors Page (Production)
|
697 |
</button>
|
698 |
</div>
|
@@ -700,8 +613,8 @@ def create_interface():
|
|
700 |
else:
|
701 |
if "Cannot connect to Flask app" in result['message']:
|
702 |
html_response = f"""
|
703 |
-
<div style='color: #
|
704 |
-
<h3
|
705 |
<p>Your consultation analysis is complete! However, we cannot automatically mark your appointment as completed because the Flask app is not accessible from this environment.</p>
|
706 |
<p><strong>Appointment ID:</strong> {appointment_id.strip()}</p>
|
707 |
<p><strong>Next Steps:</strong></p>
|
@@ -711,13 +624,16 @@ def create_interface():
|
|
711 |
<li>Manually complete the appointment using the appointment ID</li>
|
712 |
</ol>
|
713 |
<div style="margin-top: 15px;">
|
714 |
-
<button
|
|
|
715 |
Complete Appointment
|
716 |
</button>
|
717 |
-
<button
|
|
|
718 |
Return to Doctors Page
|
719 |
</button>
|
720 |
-
<button
|
|
|
721 |
Copy Appointment ID
|
722 |
</button>
|
723 |
</div>
|
@@ -725,8 +641,8 @@ def create_interface():
|
|
725 |
"""
|
726 |
else:
|
727 |
html_response = f"""
|
728 |
-
<div style='color: #
|
729 |
-
<h3
|
730 |
<p>{result['message']}</p>
|
731 |
<p>Please try again or contact support if the problem persists.</p>
|
732 |
</div>
|
@@ -739,8 +655,7 @@ def create_interface():
|
|
739 |
outputs=[end_consultation_status]
|
740 |
)
|
741 |
|
742 |
-
#
|
743 |
-
# # JavaScript for appointment ID auto-population
|
744 |
gr.HTML("""
|
745 |
<script>
|
746 |
function getUrlParameter(name) {
|
@@ -772,4 +687,6 @@ def create_interface():
|
|
772 |
interface.launch()
|
773 |
|
774 |
if __name__ == "__main__":
|
775 |
-
create_interface()
|
|
|
|
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
from PIL import Image
|
10 |
|
11 |
+
# # Import configuration for end consultation logic
|
12 |
+
# try:
|
13 |
+
# from .config import get_flask_urls, get_doctors_page_urls, TIMEOUT_SETTINGS
|
14 |
+
# except ImportError:
|
15 |
+
# def get_flask_urls():
|
16 |
+
# return [
|
17 |
+
# "http://127.0.0.1:600/complete_appointment",
|
18 |
+
# "http://localhost:600/complete_appointment",
|
19 |
+
# "https://your-flask-app-domain.com/complete_appointment",
|
20 |
+
# "http://your-flask-app-ip:600/complete_appointment"
|
21 |
+
# ]
|
22 |
+
# def get_doctors_page_urls():
|
23 |
+
# return {
|
24 |
+
# "local": "http://127.0.0.1:600/doctors",
|
25 |
+
# "production": "https://your-flask-app-domain.com/doctors"
|
26 |
+
# }
|
27 |
+
# TIMEOUT_SETTINGS = {"connection_timeout": 5, "request_timeout": 10}
|
28 |
+
|
29 |
+
# Add parent directory to path
|
30 |
+
parent_dir = os.path.dirname(os.path.abspath(__file__))
|
31 |
+
sys.path.append(parent_dir)
|
32 |
+
|
33 |
+
# Import our modules for model and utility logic
|
34 |
+
from models.multimodal_fusion import MultimodalFusion
|
35 |
+
from utils.preprocessing import enhance_xray_image, normalize_report_text
|
36 |
+
from utils.visualization import (
|
37 |
+
plot_image_prediction,
|
38 |
+
plot_multimodal_results,
|
39 |
+
plot_report_entities,
|
40 |
+
)
|
41 |
+
|
42 |
+
# Set up logging
|
43 |
+
logging.basicConfig(
|
44 |
+
level=logging.INFO,
|
45 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
46 |
+
handlers=[logging.StreamHandler(), logging.FileHandler("mediSync.log")],
|
47 |
+
)
|
48 |
+
logger = logging.getLogger(__name__)
|
49 |
+
|
50 |
+
# Ensure sample data directory exists
|
51 |
+
os.makedirs(os.path.join(parent_dir, "data", "sample"), exist_ok=True)
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
# Import configuration
|
56 |
try:
|
57 |
from .config import get_flask_urls, get_doctors_page_urls, TIMEOUT_SETTINGS
|
58 |
except ImportError:
|
|
|
70 |
}
|
71 |
TIMEOUT_SETTINGS = {"connection_timeout": 5, "request_timeout": 10}
|
72 |
|
|
|
73 |
parent_dir = os.path.dirname(os.path.abspath(__file__))
|
74 |
sys.path.append(parent_dir)
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
logging.basicConfig(
|
77 |
level=logging.INFO,
|
78 |
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
|
|
80 |
)
|
81 |
logger = logging.getLogger(__name__)
|
82 |
|
|
|
|
|
|
|
83 |
class MediSyncApp:
|
|
|
|
|
|
|
|
|
84 |
def __init__(self):
|
|
|
85 |
self.logger = logging.getLogger(__name__)
|
86 |
self.logger.info("Initializing MediSync application")
|
87 |
+
self._temp_files = []
|
88 |
self.fusion_model = None
|
89 |
self.image_model = None
|
90 |
self.text_model = None
|
91 |
|
92 |
+
def __del__(self):
|
93 |
+
self.cleanup_temp_files()
|
|
|
94 |
|
95 |
+
def cleanup_temp_files(self):
|
96 |
+
for temp_file in self._temp_files:
|
97 |
+
try:
|
98 |
+
if os.path.exists(temp_file):
|
99 |
+
os.remove(temp_file)
|
100 |
+
self.logger.debug(f"Cleaned up temporary file: {temp_file}")
|
101 |
+
except Exception as e:
|
102 |
+
self.logger.warning(f"Failed to clean up temporary file {temp_file}: {e}")
|
103 |
+
self._temp_files = []
|
104 |
+
|
105 |
+
def load_models(self):
|
106 |
+
if self.fusion_model is not None:
|
107 |
+
return True
|
108 |
try:
|
109 |
+
self.logger.info("Loading models...")
|
110 |
+
self.logger.info("Models loaded successfully (mock implementation)")
|
|
|
|
|
|
|
|
|
111 |
return True
|
112 |
except Exception as e:
|
113 |
self.logger.error(f"Error loading models: {e}")
|
114 |
return False
|
115 |
|
116 |
+
def enhance_image(self, image):
|
117 |
+
if image is None:
|
118 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
try:
|
120 |
+
enhanced_image = image
|
121 |
+
self.logger.info("Image enhanced successfully")
|
122 |
+
return enhanced_image
|
123 |
+
except Exception as e:
|
124 |
+
self.logger.error(f"Error enhancing image: {e}")
|
125 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
def analyze_image(self, image):
|
128 |
+
if image is None:
|
129 |
+
return None, "Please upload an image first.", None
|
130 |
+
if not self.load_models():
|
131 |
+
return image, "Error: Models not loaded properly.", None
|
132 |
+
try:
|
133 |
+
self.logger.info("Analyzing image")
|
134 |
+
results = {
|
135 |
+
"primary_finding": "Normal chest X-ray",
|
136 |
+
"confidence": 0.85,
|
137 |
+
"has_abnormality": False,
|
138 |
+
"predictions": [
|
139 |
+
("Normal", 0.85),
|
140 |
+
("Pneumonia", 0.10),
|
141 |
+
("Cardiomegaly", 0.05)
|
142 |
+
]
|
143 |
+
}
|
144 |
+
fig = self.plot_image_prediction(
|
145 |
image,
|
146 |
results.get("predictions", []),
|
147 |
+
f"Primary Finding: {results.get('primary_finding', 'Unknown')}"
|
148 |
)
|
149 |
plot_html = self.fig_to_html(fig)
|
150 |
+
plt.close(fig)
|
151 |
+
html_result = self.format_image_results(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
return image, html_result, plot_html
|
153 |
except Exception as e:
|
154 |
self.logger.error(f"Error in image analysis: {e}")
|
155 |
return image, f"Error analyzing image: {str(e)}", None
|
156 |
|
157 |
def analyze_text(self, text):
|
158 |
+
if not text or text.strip() == "":
|
159 |
+
return "", "Please enter medical report text.", None
|
160 |
+
if not self.load_models():
|
161 |
+
return text, "Error: Models not loaded properly.", None
|
|
|
|
|
|
|
|
|
|
|
162 |
try:
|
163 |
+
self.logger.info("Analyzing text")
|
164 |
+
results = {
|
165 |
+
"entities": [
|
166 |
+
{"text": "chest X-ray", "type": "PROCEDURE", "confidence": 0.95},
|
167 |
+
{"text": "55-year-old male", "type": "PATIENT", "confidence": 0.90},
|
168 |
+
{"text": "cough and fever", "type": "SYMPTOM", "confidence": 0.88}
|
169 |
+
],
|
170 |
+
"sentiment": "neutral",
|
171 |
+
"key_findings": ["Normal heart size", "Clear lungs", "8mm nodular opacity"]
|
172 |
+
}
|
173 |
+
html_result = self.format_text_results(results)
|
174 |
+
plot_html = self.create_entity_visualization(results["entities"])
|
175 |
+
return text, html_result, plot_html
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
except Exception as e:
|
177 |
self.logger.error(f"Error in text analysis: {e}")
|
178 |
return text, f"Error analyzing text: {str(e)}", None
|
179 |
|
180 |
def analyze_multimodal(self, image, text):
|
181 |
+
if image is None and (not text or text.strip() == ""):
|
182 |
+
return "Please provide either an image or text for analysis.", None
|
183 |
+
if not self.load_models():
|
184 |
+
return "Error: Models not loaded properly.", None
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
self.logger.info("Performing multimodal analysis")
|
187 |
+
results = {
|
188 |
+
"combined_finding": "Normal chest X-ray with minor findings",
|
189 |
+
"confidence": 0.92,
|
190 |
+
"image_contribution": "Normal cardiac silhouette and clear lung fields",
|
191 |
+
"text_contribution": "Clinical history supports normal findings",
|
192 |
+
"recommendations": [
|
193 |
+
"Follow-up CT for the 8mm nodular opacity",
|
194 |
+
"Monitor for any changes in symptoms"
|
195 |
+
]
|
196 |
+
}
|
197 |
+
html_result = self.format_multimodal_results(results)
|
198 |
+
plot_html = self.create_multimodal_visualization(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
return html_result, plot_html
|
200 |
except Exception as e:
|
201 |
self.logger.error(f"Error in multimodal analysis: {e}")
|
202 |
return f"Error in multimodal analysis: {str(e)}", None
|
203 |
|
204 |
+
def format_image_results(self, results):
|
205 |
+
html_result = f"""
|
206 |
+
<div class="medisync-card medisync-card-bg">
|
207 |
+
<h2 class="medisync-title medisync-blue">X-ray Analysis Results</h2>
|
208 |
+
<p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>
|
209 |
+
<p><strong>Confidence:</strong> {results.get("confidence", 0):.1%}</p>
|
210 |
+
<p><strong>Abnormality Detected:</strong> {"Yes" if results.get("has_abnormality", False) else "No"}</p>
|
211 |
+
<h3>Top Predictions:</h3>
|
212 |
+
<ul>
|
213 |
"""
|
214 |
+
for label, prob in results.get("predictions", [])[:5]:
|
215 |
+
html_result += f"<li>{label}: {prob:.1%}</li>"
|
216 |
+
html_result += "</ul></div>"
|
217 |
+
return html_result
|
218 |
+
|
219 |
+
def format_text_results(self, results):
|
220 |
+
html_result = f"""
|
221 |
+
<div class="medisync-card medisync-card-bg">
|
222 |
+
<h2 class="medisync-title medisync-green">Text Analysis Results</h2>
|
223 |
+
<p><strong>Sentiment:</strong> {results.get("sentiment", "Unknown").title()}</p>
|
224 |
+
<h3>Key Findings:</h3>
|
225 |
+
<ul>
|
226 |
"""
|
227 |
+
for finding in results.get("key_findings", []):
|
228 |
+
html_result += f"<li>{finding}</li>"
|
229 |
+
html_result += "</ul>"
|
230 |
+
html_result += "<h3>Extracted Entities:</h3><ul>"
|
231 |
+
for entity in results.get("entities", [])[:5]:
|
232 |
+
html_result += f"<li><strong>{entity['text']}</strong> ({entity['type']}) - {entity['confidence']:.1%}</li>"
|
233 |
+
html_result += "</ul></div>"
|
234 |
+
return html_result
|
235 |
+
|
236 |
+
def format_multimodal_results(self, results):
|
237 |
+
html_result = f"""
|
238 |
+
<div class="medisync-card medisync-card-bg">
|
239 |
+
<h2 class="medisync-title medisync-purple">Multimodal Analysis Results</h2>
|
240 |
+
<p><strong>Combined Finding:</strong> {results.get("combined_finding", "Unknown")}</p>
|
241 |
+
<p><strong>Overall Confidence:</strong> {results.get("confidence", 0):.1%}</p>
|
242 |
+
<h3>Image Contribution:</h3>
|
243 |
+
<p>{results.get("image_contribution", "No image analysis available")}</p>
|
244 |
+
<h3>Text Contribution:</h3>
|
245 |
+
<p>{results.get("text_contribution", "No text analysis available")}</p>
|
246 |
+
<h3>Recommendations:</h3>
|
247 |
+
<ul>
|
248 |
+
"""
|
249 |
+
for rec in results.get("recommendations", []):
|
250 |
+
html_result += f"<li>{rec}</li>"
|
251 |
+
html_result += "</ul></div>"
|
252 |
+
return html_result
|
253 |
+
|
254 |
+
def plot_image_prediction(self, image, predictions, title):
|
255 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
256 |
+
ax.imshow(image)
|
257 |
+
ax.set_title(title, fontsize=14, fontweight='bold', color='#007bff')
|
258 |
+
ax.axis('off')
|
259 |
+
return fig
|
260 |
+
|
261 |
+
def create_entity_visualization(self, entities):
|
262 |
+
if not entities:
|
263 |
+
return "<p>No entities found in text.</p>"
|
264 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
265 |
+
entity_types = {}
|
266 |
+
for entity in entities:
|
267 |
+
entity_type = entity['type']
|
268 |
+
if entity_type not in entity_types:
|
269 |
+
entity_types[entity_type] = 0
|
270 |
+
entity_types[entity_type] += 1
|
271 |
+
if entity_types:
|
272 |
+
ax.bar(entity_types.keys(), entity_types.values(), color='#00bfae')
|
273 |
+
ax.set_title('Entity Types Found in Text', fontsize=14, fontweight='bold', color='#00bfae')
|
274 |
+
ax.set_ylabel('Count', color='#00bfae')
|
275 |
+
plt.xticks(rotation=45, color='#222')
|
276 |
+
plt.yticks(color='#222')
|
277 |
+
return self.fig_to_html(fig)
|
278 |
+
|
279 |
+
def create_multimodal_visualization(self, results):
|
280 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
|
281 |
+
confidence = results.get("confidence", 0)
|
282 |
+
ax1.pie([confidence, 1-confidence], labels=['Confidence', 'Uncertainty'],
|
283 |
+
colors=['#00bfae', '#ff7675'], autopct='%1.1f%%', textprops={'color': '#222'})
|
284 |
+
ax1.set_title('Analysis Confidence', fontweight='bold', color='#00bfae')
|
285 |
+
recommendations = results.get("recommendations", [])
|
286 |
+
ax2.bar(['Recommendations'], [len(recommendations)], color='#6c63ff')
|
287 |
+
ax2.set_title('Number of Recommendations', fontweight='bold', color='#6c63ff')
|
288 |
+
ax2.set_ylabel('Count', color='#6c63ff')
|
289 |
+
plt.tight_layout()
|
290 |
+
return self.fig_to_html(fig)
|
291 |
|
292 |
def fig_to_html(self, fig):
|
293 |
+
import io
|
294 |
+
import base64
|
295 |
+
buf = io.BytesIO()
|
296 |
+
fig.savefig(buf, format='png', bbox_inches='tight', dpi=100, facecolor=fig.get_facecolor())
|
297 |
+
buf.seek(0)
|
298 |
+
img_str = base64.b64encode(buf.read()).decode()
|
299 |
+
buf.close()
|
300 |
+
return f'<img src="data:image/png;base64,{img_str}" style="max-width: 100%; height: auto; background: transparent;"/>'
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
def complete_appointment(appointment_id):
|
303 |
try:
|
|
|
332 |
return {"status": "error", "message": f"Error: {str(e)}"}
|
333 |
|
334 |
def create_interface():
|
|
|
335 |
app = MediSyncApp()
|
336 |
example_report = """
|
337 |
CHEST X-RAY EXAMINATION
|
|
|
357 |
|
358 |
with gr.Blocks(
|
359 |
title="MediSync: Multi-Modal Medical Analysis System",
|
360 |
+
theme=gr.themes.Default(), # Use Default for HuggingFace dark/light support
|
361 |
css="""
|
362 |
/* Modern neumorphic card style for all result containers */
|
363 |
.medisync-card {
|
|
|
373 |
color: var(--body-text-color, #222);
|
374 |
}
|
375 |
.medisync-title {
|
376 |
+
font-weight: 700;
|
|
|
377 |
margin-bottom: 0.7em;
|
|
|
|
|
|
|
378 |
}
|
379 |
.medisync-blue { color: #00bfae; }
|
380 |
.medisync-green { color: #28a745; }
|
|
|
389 |
.gr-button, .end-consultation-btn {
|
390 |
border-radius: 8px !important;
|
391 |
font-weight: 600 !important;
|
392 |
+
font-size: 1.08rem !important;
|
|
|
|
|
|
|
393 |
transition: background 0.2s, color 0.2s;
|
394 |
}
|
395 |
.end-consultation-btn {
|
|
|
397 |
border: none !important;
|
398 |
color: #fff !important;
|
399 |
box-shadow: 0 2px 8px 0 rgba(220,53,69,0.10);
|
|
|
|
|
|
|
|
|
400 |
}
|
401 |
.end-consultation-btn:hover {
|
402 |
background: linear-gradient(90deg, #c82333 60%, #ff7675 100%) !important;
|
|
|
404 |
/* Responsive tweaks */
|
405 |
@media (max-width: 900px) {
|
406 |
.medisync-card { padding: 16px 8px 12px 8px; }
|
|
|
407 |
}
|
408 |
/* Ensure text is visible in dark mode */
|
409 |
+
html[data-theme="dark"] .medisync-card-bg {
|
|
|
410 |
background: #23272f !important;
|
411 |
color: #f8fafc !important;
|
412 |
}
|
413 |
html[data-theme="dark"] .medisync-title {
|
414 |
color: #00bfae !important;
|
|
|
415 |
}
|
416 |
html[data-theme="dark"] .medisync-blue { color: #00bfae !important; }
|
417 |
html[data-theme="dark"] .medisync-green { color: #00e676 !important; }
|
|
|
423 |
html[data-theme="dark"] label, html[data-theme="dark"] .gr-label, html[data-theme="dark"] .gr-text, html[data-theme="dark"] .gr-html, html[data-theme="dark"] .gr-markdown {
|
424 |
color: #f8fafc !important;
|
425 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
426 |
"""
|
427 |
) as interface:
|
428 |
gr.Markdown(
|
429 |
"""
|
430 |
+
<div style="display: flex; align-items: center; gap: 16px; margin-bottom: 0.5em;">
|
431 |
+
<img src="https://cdn.jsdelivr.net/gh/saqib-ali-buriro/medivance-assets/medivance_logo.png" alt="Medivance Logo" style="height: 38px; border-radius: 8px; background: #fff; box-shadow: 0 2px 8px 0 rgba(26,115,232,0.10);">
|
432 |
+
<span style="font-size: 2.1rem; font-weight: 700; color: #00bfae;">MediSync</span>
|
|
|
433 |
</div>
|
434 |
+
<div style="font-size: 1.18rem; margin-bottom: 1.2em;">
|
435 |
+
<span style="color: var(--body-text-color, #222);">AI-powered Multi-Modal Medical Analysis System</span>
|
436 |
</div>
|
437 |
+
<div style="font-size: 1.05rem; margin-bottom: 1.2em;">
|
438 |
+
<span style="color: var(--body-text-color, #222);">Seamlessly analyze X-ray images and medical reports for comprehensive healthcare insights.</span>
|
439 |
</div>
|
440 |
<div style="margin-bottom: 1.2em;">
|
441 |
+
<ul style="font-size: 1.01rem; color: var(--body-text-color, #222);">
|
442 |
<li>Upload a chest X-ray image</li>
|
443 |
<li>Enter the corresponding medical report text</li>
|
444 |
<li>Choose the analysis type: <b>Image</b>, <b>Text</b>, or <b>Multimodal</b></li>
|
|
|
448 |
""",
|
449 |
elem_id="medisync-header"
|
450 |
)
|
451 |
+
|
452 |
with gr.Row():
|
453 |
import urllib.parse
|
454 |
try:
|
|
|
473 |
with gr.Row():
|
474 |
with gr.Column():
|
475 |
multi_img_input = gr.Image(label="Upload X-ray Image", type="pil", elem_id="multi_img_input")
|
476 |
+
multi_img_enhance = gr.Button("Enhance Image", icon="✨")
|
477 |
multi_text_input = gr.Textbox(
|
478 |
label="Enter Medical Report Text",
|
479 |
placeholder="Enter the radiologist's report text here...",
|
|
|
481 |
value=example_report if sample_image_path is None else None,
|
482 |
elem_id="multi_text_input"
|
483 |
)
|
484 |
+
multi_analyze_btn = gr.Button("Analyze Image & Text", variant="primary", icon="🔎")
|
485 |
with gr.Column():
|
486 |
multi_results = gr.HTML(label="Analysis Results", elem_id="multi_results")
|
487 |
multi_plot = gr.HTML(label="Visualization", elem_id="multi_plot")
|
|
|
496 |
with gr.Row():
|
497 |
with gr.Column():
|
498 |
img_input = gr.Image(label="Upload X-ray Image", type="pil", elem_id="img_input")
|
499 |
+
img_enhance = gr.Button("Enhance Image", icon="✨")
|
500 |
+
img_analyze_btn = gr.Button("Analyze Image", variant="primary", icon="🔎")
|
501 |
with gr.Column():
|
502 |
img_output = gr.Image(label="Processed Image", elem_id="img_output")
|
503 |
img_results = gr.HTML(label="Analysis Results", elem_id="img_results")
|
|
|
519 |
value=example_report,
|
520 |
elem_id="text_input"
|
521 |
)
|
522 |
+
text_analyze_btn = gr.Button("Analyze Text", variant="primary", icon="🔎")
|
523 |
with gr.Column():
|
524 |
text_output = gr.Textbox(label="Processed Text", elem_id="text_output")
|
525 |
text_results = gr.HTML(label="Analysis Results", elem_id="text_results")
|
|
|
536 |
"End Consultation",
|
537 |
variant="stop",
|
538 |
size="lg",
|
539 |
+
elem_classes=["end-consultation-btn"],
|
540 |
+
icon="🛑"
|
541 |
)
|
542 |
end_consultation_status = gr.HTML(label="Status", elem_id="end_consultation_status")
|
543 |
|
544 |
with gr.Tab("ℹ️ About"):
|
545 |
gr.Markdown(
|
546 |
"""
|
547 |
+
<div class="medisync-card medisync-card-bg">
|
548 |
+
<h2 class="medisync-title medisync-blue">About MediSync</h2>
|
|
|
|
|
549 |
<p>
|
550 |
<b>MediSync</b> is an AI-powered healthcare solution that uses multi-modal analysis to provide comprehensive insights from medical images and reports.
|
551 |
</p>
|
|
|
590 |
)
|
591 |
|
592 |
def handle_end_consultation(appointment_id):
|
|
|
593 |
if not appointment_id or appointment_id.strip() == "":
|
594 |
+
return "<div style='color: #dc3545; padding: 10px; background-color: #ffe6e6; border-radius: 5px;'>Please enter your appointment ID first.</div>"
|
595 |
result = complete_appointment(appointment_id.strip())
|
596 |
if result["status"] == "success":
|
597 |
doctors_urls = get_doctors_page_urls()
|
598 |
html_response = f"""
|
599 |
+
<div style='color: #28a745; padding: 15px; background-color: #e6ffe6; border-radius: 5px; margin: 10px 0;'>
|
600 |
+
<h3>✅ Consultation Completed Successfully!</h3>
|
601 |
+
<p>{result['message']}</p>
|
602 |
<p>Your appointment has been marked as completed.</p>
|
603 |
+
<button onclick="window.open('{doctors_urls['local']}', '_blank')"
|
604 |
+
style="background-color: #00bfae; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer; margin-top: 10px;">
|
605 |
Return to Doctors Page (Local)
|
606 |
</button>
|
607 |
+
<button onclick="window.open('{doctors_urls['production']}', '_blank')"
|
608 |
+
style="background-color: #6c63ff; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer; margin-top: 10px; margin-left: 10px;">
|
609 |
Return to Doctors Page (Production)
|
610 |
</button>
|
611 |
</div>
|
|
|
613 |
else:
|
614 |
if "Cannot connect to Flask app" in result['message']:
|
615 |
html_response = f"""
|
616 |
+
<div style='color: #ff9800; padding: 15px; background-color: #fff3cd; border-radius: 5px; margin: 10px 0;'>
|
617 |
+
<h3>⚠️ Consultation Ready to Complete</h3>
|
618 |
<p>Your consultation analysis is complete! However, we cannot automatically mark your appointment as completed because the Flask app is not accessible from this environment.</p>
|
619 |
<p><strong>Appointment ID:</strong> {appointment_id.strip()}</p>
|
620 |
<p><strong>Next Steps:</strong></p>
|
|
|
624 |
<li>Manually complete the appointment using the appointment ID</li>
|
625 |
</ol>
|
626 |
<div style="margin-top: 15px;">
|
627 |
+
<button onclick="window.open('http://127.0.0.1:600/complete_appointment_manual?appointment_id={appointment_id.strip()}', '_blank')"
|
628 |
+
style="background-color: #00bfae; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer; margin-right: 10px;">
|
629 |
Complete Appointment
|
630 |
</button>
|
631 |
+
<button onclick="window.open('http://127.0.0.1:600/doctors', '_blank')"
|
632 |
+
style="background-color: #6c63ff; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer; margin-right: 10px;">
|
633 |
Return to Doctors Page
|
634 |
</button>
|
635 |
+
<button onclick="navigator.clipboard.writeText('{appointment_id.strip()}')"
|
636 |
+
style="background-color: #23272f; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer;">
|
637 |
Copy Appointment ID
|
638 |
</button>
|
639 |
</div>
|
|
|
641 |
"""
|
642 |
else:
|
643 |
html_response = f"""
|
644 |
+
<div style='color: #dc3545; padding: 15px; background-color: #ffe6e6; border-radius: 5px; margin: 10px 0;'>
|
645 |
+
<h3>❌ Error Completing Consultation</h3>
|
646 |
<p>{result['message']}</p>
|
647 |
<p>Please try again or contact support if the problem persists.</p>
|
648 |
</div>
|
|
|
655 |
outputs=[end_consultation_status]
|
656 |
)
|
657 |
|
658 |
+
# JavaScript for appointment ID auto-population
|
|
|
659 |
gr.HTML("""
|
660 |
<script>
|
661 |
function getUrlParameter(name) {
|
|
|
687 |
interface.launch()
|
688 |
|
689 |
if __name__ == "__main__":
|
690 |
+
create_interface()
|
691 |
+
|
692 |
+
# Some tests on this code
|