Spaces:
Sleeping
Sleeping
import pandas as pd | |
import joblib | |
import streamlit as st | |
import requests | |
def recommend_movies(movie): | |
idx = df[df['title'] == movie].index[0] | |
similar_movies = similarity_matrix[idx] | |
titles = [] | |
posters = [] | |
for film in similar_movies[1:9]: | |
url = f"https://www.omdbapi.com/?i={df['imdb_id'][film]}&apikey=8c4102bb" | |
response = requests.get(url) | |
if response.status_code == 200: | |
data = response.json() | |
titles.append(data["Title"]) | |
posters.append(data["Poster"]) | |
index = 0 | |
for _ in range(2): | |
columns = st.columns(4) | |
for col in columns: | |
if index < len(titles): | |
if posters[index] != 'N/A': | |
col.image(posters[index]) | |
col.write(titles[index]) | |
else: | |
col.write(titles[index]) | |
index += 1 | |
st.title("Movie Recommendation System") | |
similarity_matrix = joblib.load("similarity_matrix.pkl") | |
df = pd.read_csv("movies.csv") | |
movie = st.selectbox("Select a Movie",df["title"]) | |
if st.button("Search"): | |
recommend_movies(movie) | |