import pandas as pd import joblib import streamlit as st import requests def recommend_movies(movie): idx = df[df['title'] == movie].index[0] similar_movies = similarity_matrix[idx] titles = [] posters = [] for film in similar_movies[1:9]: url = f"https://www.omdbapi.com/?i={df['imdb_id'][film]}&apikey=8c4102bb" response = requests.get(url) if response.status_code == 200: data = response.json() titles.append(data["Title"]) posters.append(data["Poster"]) index = 0 for _ in range(2): columns = st.columns(4) for col in columns: if index < len(titles): if posters[index] != 'N/A': col.image(posters[index]) col.write(titles[index]) else: col.write(titles[index]) index += 1 st.title("Movie Recommendation System") similarity_matrix = joblib.load("similarity_matrix.pkl") df = pd.read_csv("movies.csv") movie = st.selectbox("Select a Movie",df["title"]) if st.button("Search"): recommend_movies(movie)