blacksw0rd commited on
Commit
4852fd6
·
verified ·
1 Parent(s): cfd24e0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md CHANGED
@@ -11,3 +11,71 @@ short_description: 'customer segmentation using KMeans '
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
+
15
+ # Customer Segmentation Project
16
+
17
+ ## Overview
18
+ This project focuses on customer segmentation using KMeans clustering and RFM (Recency, Frequency, Monetary) analysis. By dividing customers into distinct segments, businesses can better understand their customer base and target specific groups with personalized strategies.
19
+
20
+ ---
21
+
22
+ ## Objectives
23
+ - Segment customers into meaningful groups using KMeans clustering.
24
+ - Perform RFM analysis to understand customer behavior.
25
+ - Identify key customer segments such as Loyal Customers, Champions, Risk Customers, and New Customers.
26
+
27
+ ---
28
+
29
+ ## Project Workflow
30
+ 1. **RFM Analysis**:
31
+ - Computed Recency, Frequency, and Monetary values for each customer.
32
+ - Created 5 bins for each RFM metric based on quantiles.
33
+ 2. **KMeans Clustering**:
34
+ - Used the processed RFM data to create 4 clusters.
35
+ - Determined the optimal number of clusters using methods like the elbow method or silhouette score.
36
+ 3. **Data Analysis**:
37
+ - Analyzed each cluster to identify patterns and insights.
38
+ - Focused on understanding key customer groups:
39
+ - **Loyal Customers**
40
+ - **Champions**
41
+ - **At Risk Customers**
42
+ - **New Customers**
43
+
44
+ ---
45
+
46
+ ## Key Results
47
+ - Clear segmentation of customers into 4 clusters.
48
+ - Detailed insights into customer groups:
49
+ - **Loyal Customers**: High frequency and monetary value, recent purchases.
50
+ - **Champions**: Very high monetary value and frequency.
51
+ - **At Risk Customers**: Low recency and frequency, indicating potential churn.
52
+ - **New Customers**: Recently acquired, low frequency and monetary value.
53
+
54
+ ---
55
+
56
+ ## Technologies Used
57
+ - **Python**: Data analysis and clustering.
58
+ - **Libraries**:
59
+ - `pandas`, `numpy` for data manipulation.
60
+ - `matplotlib`, `seaborn` `plotly`for data visualization.
61
+ - `sklearn` for KMeans clustering.
62
+
63
+ ---
64
+ ## Create a Virtual Environment
65
+ ```
66
+ python -m venv venv
67
+ ```
68
+ Activate the Virtual Environment in Windows
69
+ ```
70
+ venv\Scripts\activate
71
+ ```
72
+
73
+ ## Install Dependencies
74
+ ```
75
+ pip install -r requirements.txt
76
+ ```
77
+
78
+ ## Run the Project
79
+ ```
80
+ streamlit run app.py
81
+ ```