import streamlit as st import numpy as np import pandas as pd import joblib import matplotlib.pyplot as plt import plotly.express as px st.title("Customer Segmentation") kmeans = joblib.load("kmeans.pkl") scaler = joblib.load("scaler.pkl") rfm = pd.read_csv("transformation.csv") cluster_label = {0: 'Loyal Customers', 1: 'At Risk', 2: 'Champions', 3: 'New Customers'} def customer_segmentation(num1,num2,num3): print("Customer Segmentation") data_recency = np.log1p(num1) data_frequency = np.log1p(num2) data_monetary = np.log1p(num3) data = pd.DataFrame({'Recency': [data_recency], 'Frequency': [data_frequency], 'Monetary': [data_monetary]}) X_data = scaler.transform(data) pred = kmeans.predict(X_data) return cluster_label[pred[0]] col1,col2,col3 = st.columns(3) num1 = col1.number_input("Enter Recency",min_value=1,max_value=400,step=1) num2 = col2.number_input("Enter Frequency",min_value=1,max_value=6000,step=1) num3 = col3.number_input("Enter Monetary",min_value=1,step=10) value = "" if st.button(label="Predict"): value = customer_segmentation(num1,num2,num3) st.markdown(f"{value}",unsafe_allow_html=True) custom_colors = { 'Loyal Customers': '#99ff99', 'Champions': '#66b3ff', 'At Risk': '#ff9999', 'New Customers': '#ffcc99' } figx = px.scatter_3d( rfm, x='Recency', y='Frequency', z='Monetary', color='Cluster Labels', color_discrete_map=custom_colors, labels={'Recency': 'Recency', 'Frequency': 'Frequency', 'Monetary': 'Monetary'}, title='Customer Segmentation Visualization' ) st.plotly_chart(figx) customers = rfm.shape[0] labels = ['Loyal Customers','At Risk','Champions','New Customers'] sizes = (rfm["Cluster"].value_counts()/customers)*100 colors = ['#99ff99', '#ff9999', '#66b3ff', '#ffcc99'] fig,ax = plt.subplots(figsize=(8,6)) ax.pie( sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=120, wedgeprops={'edgecolor': 'black'} ) ax.set_title('Customer Segmentation', fontsize=14) ax.legend([0,1,2,3],title='Clusters',loc='best',) st.pyplot(fig)