File size: 4,181 Bytes
b87a3ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import torch
from typing import Any, Dict, Generator, List, Optional, Tuple
from threading import Thread
from transformers import GenerationConfig, TextIteratorStreamer

from llmtuner.extras.misc import dispatch_model, get_logits_processor
from llmtuner.extras.template import get_template_and_fix_tokenizer
from llmtuner.tuner.core import get_infer_args, load_model_and_tokenizer


class ChatModel:

    def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
        model_args, data_args, finetuning_args, self.generating_args = get_infer_args(args)
        self.model, self.tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
        self.tokenizer.padding_side = "left"
        self.model = dispatch_model(self.model)
        self.template = get_template_and_fix_tokenizer(data_args.template, self.tokenizer)
        self.system_prompt = data_args.system_prompt

    def process_args(
        self,
        query: str,
        history: Optional[List[Tuple[str, str]]] = None,
        system: Optional[str] = None,
        **input_kwargs
    ) -> Tuple[Dict[str, Any], int]:
        system = system or self.system_prompt

        prompt, _ = self.template.encode_oneturn(
            tokenizer=self.tokenizer, query=query, resp="", history=history, system=system
        )
        input_ids = torch.tensor([prompt], device=self.model.device)
        prompt_length = len(input_ids[0])

        do_sample = input_kwargs.pop("do_sample", None)
        temperature = input_kwargs.pop("temperature", None)
        top_p = input_kwargs.pop("top_p", None)
        top_k = input_kwargs.pop("top_k", None)
        repetition_penalty = input_kwargs.pop("repetition_penalty", None)
        max_length = input_kwargs.pop("max_length", None)
        max_new_tokens = input_kwargs.pop("max_new_tokens", None)

        generating_args = self.generating_args.to_dict()
        generating_args.update(dict(
            do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
            temperature=temperature or generating_args["temperature"],
            top_p=top_p or generating_args["top_p"],
            top_k=top_k or generating_args["top_k"],
            repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
            eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
            pad_token_id=self.tokenizer.pad_token_id
        ))

        if max_length:
            generating_args.pop("max_new_tokens", None)
            generating_args["max_length"] = max_length

        if max_new_tokens:
            generating_args.pop("max_length", None)
            generating_args["max_new_tokens"] = max_new_tokens

        gen_kwargs = dict(
            inputs=input_ids,
            generation_config=GenerationConfig(**generating_args),
            logits_processor=get_logits_processor()
        )

        return gen_kwargs, prompt_length

    @torch.inference_mode()
    def chat(
        self,
        query: str,
        history: Optional[List[Tuple[str, str]]] = None,
        system: Optional[str] = None,
        **input_kwargs
    ) -> Tuple[str, Tuple[int, int]]:
        gen_kwargs, prompt_length = self.process_args(query, history, system, **input_kwargs)
        generation_output = self.model.generate(**gen_kwargs)
        outputs = generation_output.tolist()[0][prompt_length:]
        response = self.tokenizer.decode(outputs, skip_special_tokens=True)
        response_length = len(outputs)
        return response, (prompt_length, response_length)

    @torch.inference_mode()
    def stream_chat(
        self,
        query: str,
        history: Optional[List[Tuple[str, str]]] = None,
        system: Optional[str] = None,
        **input_kwargs
    ) -> Generator[str, None, None]:
        gen_kwargs, _ = self.process_args(query, history, system, **input_kwargs)
        streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
        gen_kwargs["streamer"] = streamer

        thread = Thread(target=self.model.generate, kwargs=gen_kwargs)
        thread.start()

        yield from streamer