File size: 4,746 Bytes
b87a3ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import json
from typing import Literal, Optional
from dataclasses import asdict, dataclass, field


@dataclass
class FinetuningArguments:
    r"""
    Arguments pertaining to which techniques we are going to fine-tuning with.
    """
    finetuning_type: Optional[Literal["lora", "freeze", "full", "none"]] = field(
        default="lora",
        metadata={"help": "Which fine-tuning method to use."}
    )
    num_hidden_layers: Optional[int] = field(
        default=32,
        metadata={"help": "Number of decoder blocks in the model for partial-parameter (freeze) fine-tuning. \
                  LLaMA choices: [\"32\", \"40\", \"60\", \"80\"], \
                  LLaMA-2 choices: [\"32\", \"40\", \"80\"], \
                  BLOOM choices: [\"24\", \"30\", \"70\"], \
                  Falcon choices: [\"32\", \"60\"], \
                  Baichuan choices: [\"32\", \"40\"] \
                  Qwen choices: [\"32\"], \
                  XVERSE choices: [\"40\"], \
                  ChatGLM2 choices: [\"28\"]"}
    )
    num_layer_trainable: Optional[int] = field(
        default=3,
        metadata={"help": "Number of trainable layers for partial-parameter (freeze) fine-tuning."}
    )
    name_module_trainable: Optional[Literal["mlp", "self_attn", "self_attention"]] = field(
        default="mlp",
        metadata={"help": "Name of trainable modules for partial-parameter (freeze) fine-tuning. \
                  LLaMA choices: [\"mlp\", \"self_attn\"], \
                  BLOOM & Falcon & ChatGLM2 choices: [\"mlp\", \"self_attention\"], \
                  Baichuan choices: [\"mlp\", \"self_attn\"], \
                  Qwen choices: [\"mlp\", \"attn\"], \
                  LLaMA-2, InternLM, XVERSE choices: the same as LLaMA."}
    )
    lora_rank: Optional[int] = field(
        default=8,
        metadata={"help": "The intrinsic dimension for LoRA fine-tuning."}
    )
    lora_alpha: Optional[float] = field(
        default=32.0,
        metadata={"help": "The scale factor for LoRA fine-tuning (similar with the learning rate)."}
    )
    lora_dropout: Optional[float] = field(
        default=0.1,
        metadata={"help": "Dropout rate for the LoRA fine-tuning."}
    )
    lora_target: Optional[str] = field(
        default=None,
        metadata={"help": "Name(s) of target modules to apply LoRA. Use commas to separate multiple modules. \
                  LLaMA choices: [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
                  BLOOM & Falcon & ChatGLM2 choices: [\"query_key_value\", \"self_attention.dense\", \"mlp.dense\"], \
                  Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
                  Qwen choices: [\"c_attn\", \"attn.c_proj\", \"w1\", \"w2\", \"mlp.c_proj\"], \
                  LLaMA-2, InternLM, XVERSE choices: the same as LLaMA."}
    )
    resume_lora_training: Optional[bool] = field(
        default=True,
        metadata={"help": "Whether to resume training from the last LoRA weights or create new weights after merging them."}
    )
    ppo_score_norm: Optional[bool] = field(
        default=False,
        metadata={"help": "Use score normalization in PPO Training."}
    )
    dpo_beta: Optional[float] = field(
        default=0.1,
        metadata={"help": "The beta parameter for the DPO loss."}
    )

    def __post_init__(self):
        if isinstance(self.lora_target, str): # support custom target modules/layers of LoRA
            self.lora_target = [target.strip() for target in self.lora_target.split(",")]

        if self.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0
            trainable_layer_ids = [self.num_hidden_layers - k - 1 for k in range(self.num_layer_trainable)]
        else: # fine-tuning the first n layers if num_layer_trainable < 0
            trainable_layer_ids = [k for k in range(-self.num_layer_trainable)]

        self.trainable_layers = ["{:d}.{}".format(idx, self.name_module_trainable) for idx in trainable_layer_ids]

        assert self.finetuning_type in ["lora", "freeze", "full", "none"], "Invalid fine-tuning method."

    def save_to_json(self, json_path: str):
        r"""Saves the content of this instance in JSON format inside `json_path`."""
        json_string = json.dumps(asdict(self), indent=2, sort_keys=True) + "\n"
        with open(json_path, "w", encoding="utf-8") as f:
            f.write(json_string)

    @classmethod
    def load_from_json(cls, json_path: str):
        r"""Creates an instance from the content of `json_path`."""
        with open(json_path, "r", encoding="utf-8") as f:
            text = f.read()
        return cls(**json.loads(text))