File size: 4,091 Bytes
b87a3ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import os
import torch
from typing import TYPE_CHECKING

from peft import (
    PeftModel,
    TaskType,
    LoraConfig,
    get_peft_model
)
from peft.utils import CONFIG_NAME, WEIGHTS_NAME

from llmtuner.extras.logging import get_logger
from llmtuner.tuner.core.utils import find_all_linear_modules

if TYPE_CHECKING:
    from transformers.modeling_utils import PreTrainedModel
    from llmtuner.hparams import ModelArguments, FinetuningArguments


logger = get_logger(__name__)


def init_adapter(
    model: "PreTrainedModel",
    model_args: "ModelArguments",
    finetuning_args: "FinetuningArguments",
    is_trainable: bool,
    is_mergeable: bool
) -> "PreTrainedModel":
    r"""
    Initializes the adapters.

    Support full-parameter, freeze and LoRA training.

    Note that the trainable parameters must be cast to float32.
    """

    if finetuning_args.finetuning_type == "none" and is_trainable:
        raise ValueError("You cannot use finetuning_type=none while training.")

    if finetuning_args.finetuning_type == "full" and is_trainable:
        logger.info("Fine-tuning method: Full")
        model = model.float()

    if finetuning_args.finetuning_type == "freeze":
        logger.info("Fine-tuning method: Freeze")

        for name, param in model.named_parameters():
            if not any(trainable_layer in name for trainable_layer in finetuning_args.trainable_layers):
                param.requires_grad_(False)
            else:
                param.data = param.data.to(torch.float32)

    if finetuning_args.finetuning_type == "lora":
        logger.info("Fine-tuning method: LoRA")
        latest_checkpoint = None

        if model_args.checkpoint_dir is not None:
            assert os.path.exists(os.path.join(model_args.checkpoint_dir[0], WEIGHTS_NAME)), \
                "Provided path ({}) does not contain a LoRA weight.".format(model_args.checkpoint_dir[0])
            assert os.path.exists(os.path.join(model_args.checkpoint_dir[0], CONFIG_NAME)), \
                "The given checkpoint may be not a LoRA checkpoint, please specify `--finetuning_type full/freeze` instead."

            if (is_trainable and finetuning_args.resume_lora_training) or (not is_mergeable): # continually fine-tuning
                checkpoints_to_merge, latest_checkpoint = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1]
            else:
                checkpoints_to_merge = model_args.checkpoint_dir

            for checkpoint in checkpoints_to_merge:
                model = PeftModel.from_pretrained(model, checkpoint)
                model = model.merge_and_unload()

            if len(checkpoints_to_merge) > 0:
                logger.info("Merged {} model checkpoint(s).".format(len(checkpoints_to_merge)))

            if latest_checkpoint is not None: # resume lora training or quantized inference
                model = PeftModel.from_pretrained(model, latest_checkpoint, is_trainable=is_trainable)

        if is_trainable and latest_checkpoint is None: # create new lora weights while training
            if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
                target_modules = find_all_linear_modules(model, model_args.quantization_bit)
            else:
                target_modules = finetuning_args.lora_target

            lora_config = LoraConfig(
                task_type=TaskType.CAUSAL_LM,
                inference_mode=False,
                r=finetuning_args.lora_rank,
                lora_alpha=finetuning_args.lora_alpha,
                lora_dropout=finetuning_args.lora_dropout,
                target_modules=target_modules
            )
            model = get_peft_model(model, lora_config)
            if id(model.peft_config) != id(model.base_model.peft_config): # https://github.com/huggingface/peft/issues/923
                model.base_model.peft_config = model.peft_config

    if model_args.checkpoint_dir is not None:
        logger.info("Loaded fine-tuned model from checkpoint(s): {}".format(",".join(model_args.checkpoint_dir)))

    return model