File size: 10,093 Bytes
b87a3ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import gradio as gr
import logging
import os
import threading
import time
import transformers
from transformers.trainer import TRAINING_ARGS_NAME
from typing import Any, Dict, Generator, List, Tuple

from llmtuner.extras.callbacks import LogCallback
from llmtuner.extras.constants import DEFAULT_MODULE, TRAINING_STAGES
from llmtuner.extras.logging import LoggerHandler
from llmtuner.extras.misc import torch_gc
from llmtuner.tuner import run_exp
from llmtuner.webui.common import get_model_path, get_save_dir, load_config
from llmtuner.webui.locales import ALERTS
from llmtuner.webui.utils import gen_cmd, get_eval_results, update_process_bar


class Runner:

    def __init__(self):
        self.aborted = False
        self.running = False
        self.logger_handler = LoggerHandler()
        self.logger_handler.setLevel(logging.INFO)
        logging.root.addHandler(self.logger_handler)
        transformers.logging.add_handler(self.logger_handler)

    def set_abort(self):
        self.aborted = True
        self.running = False

    def _initialize(
        self, lang: str, model_name: str, dataset: List[str]
    ) -> str:
        if self.running:
            return ALERTS["err_conflict"][lang]

        if not model_name:
            return ALERTS["err_no_model"][lang]

        if not get_model_path(model_name):
            return ALERTS["err_no_path"][lang]

        if len(dataset) == 0:
            return ALERTS["err_no_dataset"][lang]

        self.aborted = False
        self.logger_handler.reset()
        self.trainer_callback = LogCallback(self)
        return ""

    def _finalize(
        self, lang: str, finish_info: str
    ) -> str:
        self.running = False
        torch_gc()
        if self.aborted:
            return ALERTS["info_aborted"][lang]
        else:
            return finish_info

    def _parse_train_args(
        self,
        lang: str,
        model_name: str,
        checkpoints: List[str],
        finetuning_type: str,
        quantization_bit: str,
        template: str,
        system_prompt: str,
        training_stage: str,
        dataset_dir: str,
        dataset: List[str],
        cutoff_len: int,
        learning_rate: str,
        num_train_epochs: str,
        max_samples: str,
        compute_type: str,
        batch_size: int,
        gradient_accumulation_steps: int,
        lr_scheduler_type: str,
        max_grad_norm: str,
        val_size: float,
        logging_steps: int,
        save_steps: int,
        warmup_steps: int,
        flash_attn: bool,
        rope_scaling: bool,
        lora_rank: int,
        lora_dropout: float,
        lora_target: str,
        resume_lora_training: bool,
        dpo_beta: float,
        reward_model: str,
        output_dir: str
    ) -> Tuple[str, str, List[str], str, Dict[str, Any]]:
        if checkpoints:
            checkpoint_dir = ",".join(
                [get_save_dir(model_name, finetuning_type, ckpt) for ckpt in checkpoints]
            )
        else:
            checkpoint_dir = None

        output_dir = get_save_dir(model_name, finetuning_type, output_dir)

        user_config = load_config()
        cache_dir = user_config.get("cache_dir", None)

        args = dict(
            stage=TRAINING_STAGES[training_stage],
            model_name_or_path=get_model_path(model_name),
            do_train=True,
            overwrite_cache=False,
            cache_dir=cache_dir,
            checkpoint_dir=checkpoint_dir,
            finetuning_type=finetuning_type,
            quantization_bit=int(quantization_bit) if quantization_bit in ["8", "4"] else None,
            template=template,
            system_prompt=system_prompt,
            dataset_dir=dataset_dir,
            dataset=",".join(dataset),
            cutoff_len=cutoff_len,
            learning_rate=float(learning_rate),
            num_train_epochs=float(num_train_epochs),
            max_samples=int(max_samples),
            per_device_train_batch_size=batch_size,
            gradient_accumulation_steps=gradient_accumulation_steps,
            lr_scheduler_type=lr_scheduler_type,
            max_grad_norm=float(max_grad_norm),
            logging_steps=logging_steps,
            save_steps=save_steps,
            warmup_steps=warmup_steps,
            flash_attn=flash_attn,
            rope_scaling="linear" if rope_scaling else None,
            lora_rank=lora_rank,
            lora_dropout=lora_dropout,
            lora_target=lora_target or DEFAULT_MODULE.get(model_name.split("-")[0], "q_proj,v_proj"),
            resume_lora_training=(
                False if TRAINING_STAGES[training_stage] in ["rm", "ppo", "dpo"] else resume_lora_training
            ),
            output_dir=output_dir
        )
        args[compute_type] = True

        if args["stage"] == "ppo":
            args["reward_model"] = reward_model
            val_size = 0

        if args["stage"] == "dpo":
            args["dpo_beta"] = dpo_beta

        if val_size > 1e-6:
            args["val_size"] = val_size
            args["evaluation_strategy"] = "steps"
            args["eval_steps"] = save_steps
            args["load_best_model_at_end"] = True

        return lang, model_name, dataset, output_dir, args

    def _parse_eval_args(
        self,
        lang: str,
        model_name: str,
        checkpoints: List[str],
        finetuning_type: str,
        quantization_bit: str,
        template: str,
        system_prompt: str,
        dataset_dir: str,
        dataset: List[str],
        cutoff_len: int,
        max_samples: str,
        batch_size: int,
        predict: bool,
        max_new_tokens: int,
        top_p: float,
        temperature: float
    ) -> Tuple[str, str, List[str], str, Dict[str, Any]]:
        if checkpoints:
            checkpoint_dir = ",".join(
                [get_save_dir(model_name, finetuning_type, ckpt) for ckpt in checkpoints]
            )
            output_dir = get_save_dir(model_name, finetuning_type, "eval_" + "_".join(checkpoints))
        else:
            checkpoint_dir = None
            output_dir = get_save_dir(model_name, finetuning_type, "eval_base")

        user_config = load_config()
        cache_dir = user_config.get("cache_dir", None)

        args = dict(
            stage="sft",
            model_name_or_path=get_model_path(model_name),
            do_eval=True,
            overwrite_cache=False,
            predict_with_generate=True,
            cache_dir=cache_dir,
            checkpoint_dir=checkpoint_dir,
            finetuning_type=finetuning_type,
            quantization_bit=int(quantization_bit) if quantization_bit in ["8", "4"] else None,
            template=template,
            system_prompt=system_prompt,
            dataset_dir=dataset_dir,
            dataset=",".join(dataset),
            cutoff_len=cutoff_len,
            max_samples=int(max_samples),
            per_device_eval_batch_size=batch_size,
            max_new_tokens=max_new_tokens,
            top_p=top_p,
            temperature=temperature,
            output_dir=output_dir
        )

        if predict:
            args.pop("do_eval", None)
            args["do_predict"] = True

        return lang, model_name, dataset, output_dir, args

    def preview_train(self, *args) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
        lang, model_name, dataset, _, args = self._parse_train_args(*args)
        error = self._initialize(lang, model_name, dataset)
        if error:
            yield error, gr.update(visible=False)
        else:
            yield gen_cmd(args), gr.update(visible=False)

    def preview_eval(self, *args) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
        lang, model_name, dataset, _, args = self._parse_eval_args(*args)
        error = self._initialize(lang, model_name, dataset)
        if error:
            yield error, gr.update(visible=False)
        else:
            yield gen_cmd(args), gr.update(visible=False)

    def run_train(self, *args) -> Generator[Tuple[str, Dict[str, Any]], None, None]:
        lang, model_name, dataset, output_dir, args = self._parse_train_args(*args)
        error = self._initialize(lang, model_name, dataset)
        if error:
            yield error, gr.update(visible=False)
            return

        self.running = True
        run_kwargs = dict(args=args, callbacks=[self.trainer_callback])
        thread = threading.Thread(target=run_exp, kwargs=run_kwargs)
        thread.start()

        while thread.is_alive():
            time.sleep(2)
            if self.aborted:
                yield ALERTS["info_aborting"][lang], gr.update(visible=False)
            else:
                yield self.logger_handler.log, update_process_bar(self.trainer_callback)

        if os.path.exists(os.path.join(output_dir, TRAINING_ARGS_NAME)):
            finish_info = ALERTS["info_finished"][lang]
        else:
            finish_info = ALERTS["err_failed"][lang]

        yield self._finalize(lang, finish_info), gr.update(visible=False)

    def run_eval(self, *args) -> Generator[str, None, None]:
        lang, model_name, dataset, output_dir, args = self._parse_eval_args(*args)
        error = self._initialize(lang, model_name, dataset)
        if error:
            yield error, gr.update(visible=False)
            return

        self.running = True
        run_kwargs = dict(args=args, callbacks=[self.trainer_callback])
        thread = threading.Thread(target=run_exp, kwargs=run_kwargs)
        thread.start()

        while thread.is_alive():
            time.sleep(2)
            if self.aborted:
                yield ALERTS["info_aborting"][lang], gr.update(visible=False)
            else:
                yield self.logger_handler.log, update_process_bar(self.trainer_callback)

        if os.path.exists(os.path.join(output_dir, "all_results.json")):
            finish_info = get_eval_results(os.path.join(output_dir, "all_results.json"))
        else:
            finish_info = ALERTS["err_failed"][lang]

        yield self._finalize(lang, finish_info), gr.update(visible=False)