blackwingedkite's picture
Upload 96 files
b87a3ce
import uvicorn
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from contextlib import asynccontextmanager
from sse_starlette import EventSourceResponse
from typing import List, Tuple
from llmtuner.extras.misc import torch_gc
from llmtuner.chat import ChatModel
from llmtuner.api.protocol import (
Role,
Finish,
ModelCard,
ModelList,
ChatMessage,
DeltaMessage,
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionStreamResponse,
ChatCompletionResponseChoice,
ChatCompletionResponseStreamChoice,
ChatCompletionResponseUsage
)
@asynccontextmanager
async def lifespan(app: FastAPI): # collects GPU memory
yield
torch_gc()
def create_app(chat_model: ChatModel) -> FastAPI:
app = FastAPI(lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/v1/models", response_model=ModelList)
async def list_models():
model_card = ModelCard(id="gpt-3.5-turbo")
return ModelList(data=[model_card])
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
if len(request.messages) < 1 or request.messages[-1].role != Role.USER:
raise HTTPException(status_code=400, detail="Invalid request")
query = request.messages[-1].content
prev_messages = request.messages[:-1]
if len(prev_messages) > 0 and prev_messages[0].role == Role.SYSTEM:
system = prev_messages.pop(0).content
else:
system = None
history = []
if len(prev_messages) % 2 == 0:
for i in range(0, len(prev_messages), 2):
if prev_messages[i].role == Role.USER and prev_messages[i+1].role == Role.ASSISTANT:
history.append([prev_messages[i].content, prev_messages[i+1].content])
if request.stream:
generate = predict(query, history, system, request)
return EventSourceResponse(generate, media_type="text/event-stream")
response, (prompt_length, response_length) = chat_model.chat(
query, history, system, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens
)
usage = ChatCompletionResponseUsage(
prompt_tokens=prompt_length,
completion_tokens=response_length,
total_tokens=prompt_length+response_length
)
choice_data = ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role=Role.ASSISTANT, content=response),
finish_reason=Finish.STOP
)
return ChatCompletionResponse(model=request.model, choices=[choice_data], usage=usage)
async def predict(query: str, history: List[Tuple[str, str]], system: str, request: ChatCompletionRequest):
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role=Role.ASSISTANT),
finish_reason=None
)
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield chunk.json(exclude_unset=True, ensure_ascii=False)
for new_text in chat_model.stream_chat(
query, history, system, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens
):
if len(new_text) == 0:
continue
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(content=new_text),
finish_reason=None
)
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield chunk.json(exclude_unset=True, ensure_ascii=False)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(),
finish_reason=Finish.STOP
)
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data])
yield chunk.json(exclude_unset=True, ensure_ascii=False)
yield "[DONE]"
return app
if __name__ == "__main__":
chat_model = ChatModel()
app = create_app(chat_model)
uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)