Spaces:
Runtime error
Runtime error
import tiktoken | |
from dataclasses import dataclass | |
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union | |
from llmtuner.extras.logging import get_logger | |
if TYPE_CHECKING: | |
from transformers import PreTrainedTokenizer | |
logger = get_logger(__name__) | |
class Template: | |
prefix: List[Union[str, Dict[str, str]]] | |
prompt: List[Union[str, Dict[str, str]]] | |
system: str | |
sep: List[Union[str, Dict[str, str]]] | |
stop_words: List[str] | |
use_history: bool | |
efficient_eos: bool | |
def encode_oneturn( | |
self, | |
tokenizer: "PreTrainedTokenizer", | |
query: str, | |
resp: str, | |
history: Optional[List[Tuple[str, str]]] = None, | |
system: Optional[str] = None | |
) -> Tuple[List[int], List[int]]: | |
r""" | |
Returns a single pair of token ids representing prompt and response respectively. | |
""" | |
system, history = self._format(query, resp, history, system) | |
encoded_pairs = self._encode(tokenizer, system, history) | |
prompt_ids = [] | |
for query_ids, resp_ids in encoded_pairs[:-1]: | |
prompt_ids = prompt_ids + query_ids + resp_ids | |
prompt_ids, answer_ids = prompt_ids + encoded_pairs[-1][0], encoded_pairs[-1][1] | |
return prompt_ids, answer_ids | |
def encode_multiturn( | |
self, | |
tokenizer: "PreTrainedTokenizer", | |
query: str, | |
resp: str, | |
history: Optional[List[Tuple[str, str]]] = None, | |
system: Optional[str] = None | |
) -> List[Tuple[List[int], List[int]]]: | |
r""" | |
Returns multiple pairs of token ids representing prompts and responses respectively. | |
""" | |
system, history = self._format(query, resp, history, system) | |
encoded_pairs = self._encode(tokenizer, system, history) | |
return encoded_pairs | |
def _format( | |
self, | |
query: str, | |
resp: str, | |
history: Optional[List[Tuple[str, str]]] = None, | |
system: Optional[str] = None | |
) -> Tuple[str, List[Tuple[str, str]]]: | |
r""" | |
Aligns inputs to the standard format. | |
""" | |
system = system or self.system # use system if provided | |
history = history if (history and self.use_history) else [] | |
history = history + [(query, resp)] | |
return system, history | |
def _get_special_ids( | |
self, | |
tokenizer: "PreTrainedTokenizer" | |
) -> Tuple[List[int], List[int]]: | |
if tokenizer.bos_token_id is not None and getattr(tokenizer, "add_bos_token", True): | |
bos_ids = [tokenizer.bos_token_id] | |
else: # baichuan, qwen and gpt2 models have no bos token | |
bos_ids = [] | |
if tokenizer.eos_token_id is None: | |
raise ValueError("EOS token is required.") | |
if self.efficient_eos: # used in baichuan, qwen, chatglm, etc. | |
eos_ids = [] | |
else: | |
eos_ids = [tokenizer.eos_token_id] | |
return bos_ids, eos_ids | |
def _encode( | |
self, | |
tokenizer: "PreTrainedTokenizer", | |
system: str, | |
history: List[Tuple[str, str]] | |
) -> List[Tuple[List[int], List[int]]]: | |
r""" | |
Encodes formatted inputs to pairs of token ids. | |
Turn 0: bos + prefix + sep + query resp + eos | |
Turn t: sep + bos + query resp + eos | |
""" | |
bos_ids, eos_ids = self._get_special_ids(tokenizer) | |
sep_ids = self._convert_inputs_to_ids(tokenizer, context=self.sep) | |
encoded_pairs = [] | |
for turn_idx, (query, resp) in enumerate(history): | |
if turn_idx == 0: | |
prefix_ids = self._convert_inputs_to_ids(tokenizer, context=self.prefix, system=system) | |
if len(prefix_ids) != 0: # has prefix | |
prefix_ids = bos_ids + prefix_ids + sep_ids | |
else: | |
prefix_ids = bos_ids | |
else: | |
prefix_ids = sep_ids + bos_ids | |
query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query, idx=str(turn_idx)) | |
resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp]) | |
encoded_pairs.append((prefix_ids + query_ids, resp_ids + eos_ids)) | |
return encoded_pairs | |
def _convert_inputs_to_ids( | |
self, | |
tokenizer: "PreTrainedTokenizer", | |
context: List[Union[str, Dict[str, str]]], | |
system: Optional[str] = None, | |
query: Optional[str] = None, | |
idx: Optional[str] = None | |
) -> List[int]: | |
r""" | |
Converts context to token ids. | |
""" | |
if isinstance(getattr(tokenizer, "tokenizer", None), tiktoken.Encoding): # for tiktoken tokenizer (Qwen) | |
kwargs = dict(allowed_special="all") | |
else: | |
kwargs = dict(add_special_tokens=False) | |
token_ids = [] | |
for elem in context: | |
if isinstance(elem, str): | |
if len(elem) == 0: | |
continue | |
elem = elem.replace("{{system}}", system, 1) if system is not None else elem | |
elem = elem.replace("{{query}}", query, 1) if query is not None else elem | |
elem = elem.replace("{{idx}}", idx, 1) if idx is not None else elem | |
token_ids = token_ids + tokenizer.encode(elem, **kwargs) | |
elif isinstance(elem, dict): | |
token_ids = token_ids + [tokenizer.convert_tokens_to_ids(elem.get("token"))] | |
else: | |
raise ValueError("Input must be string or dict[str, str], got {}".format(type(elem))) | |
return token_ids | |
class Llama2Template(Template): | |
def _encode( | |
self, | |
tokenizer: "PreTrainedTokenizer", | |
system: str, | |
history: List[Tuple[str, str]] | |
) -> List[Tuple[List[int], List[int]]]: | |
r""" | |
Encodes formatted inputs to pairs of token ids. | |
Turn 0: bos + prefix + query resp + eos | |
Turn t: bos + query resp + eos | |
""" | |
bos_ids, eos_ids = self._get_special_ids(tokenizer) | |
encoded_pairs = [] | |
for turn_idx, (query, resp) in enumerate(history): | |
if turn_idx == 0: # llama2 template has no sep_ids | |
query = self.prefix[0].replace("{{system}}", system) + query | |
query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query) | |
resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp]) | |
encoded_pairs.append((bos_ids + query_ids, resp_ids + eos_ids)) | |
return encoded_pairs | |
templates: Dict[str, Template] = {} | |
def register_template( | |
name: str, | |
prefix: List[Union[str, Dict[str, str]]], | |
prompt: List[Union[str, Dict[str, str]]], | |
system: str, | |
sep: List[Union[str, Dict[str, str]]], | |
stop_words: Optional[List[str]] = [], | |
use_history: Optional[bool] = True, | |
efficient_eos: Optional[bool] = False | |
) -> None: | |
template_class = Llama2Template if "llama2" in name else Template | |
templates[name] = template_class( | |
prefix=prefix, | |
prompt=prompt, | |
system=system, | |
sep=sep, | |
stop_words=stop_words, | |
use_history=use_history, | |
efficient_eos=efficient_eos | |
) | |
def get_template_and_fix_tokenizer( | |
name: str, | |
tokenizer: "PreTrainedTokenizer" | |
) -> Template: | |
if tokenizer.eos_token_id is None: | |
tokenizer.eos_token = "<|endoftext|>" | |
logger.info("Add eos token: {}".format(tokenizer.eos_token)) | |
if tokenizer.pad_token_id is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
logger.info("Add pad token: {}".format(tokenizer.pad_token)) | |
if name is None: | |
return None | |
template = templates.get(name, None) | |
assert template is not None, "Template {} does not exist.".format(name) | |
tokenizer.add_special_tokens( | |
dict(additional_special_tokens=template.stop_words), | |
replace_additional_special_tokens=False | |
) | |
return template | |
r""" | |
Supports language model inference without histories. | |
""" | |
register_template( | |
name="vanilla", | |
prefix=[], | |
prompt=[ | |
"{{query}}" | |
], | |
system="", | |
sep=[], | |
use_history=False | |
) | |
r""" | |
Default template. | |
""" | |
register_template( | |
name="default", | |
prefix=[ | |
"{{system}}" | |
], | |
prompt=[ | |
"Human: {{query}}\nAssistant: " | |
], | |
system=( | |
"A chat between a curious user and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the user's questions." | |
), | |
sep=[ | |
"\n" | |
] | |
) | |
r""" | |
Supports: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf | |
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf | |
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf | |
""" | |
register_template( | |
name="llama2", | |
prefix=[ | |
"<<SYS>>\n{{system}}\n<</SYS>>\n\n" | |
], | |
prompt=[ | |
"[INST] {{query}} [/INST] " | |
], | |
system=( | |
"You are a helpful, respectful and honest assistant. " | |
"Always answer as helpfully as possible, while being safe. " | |
"Your answers should not include any harmful, unethical, " | |
"racist, sexist, toxic, dangerous, or illegal content. " | |
"Please ensure that your responses are socially unbiased and positive in nature.\n\n" | |
"If a question does not make any sense, or is not factually coherent, " | |
"explain why instead of answering something not correct. " | |
"If you don't know the answer to a question, please don't share false information." | |
), | |
sep=[] | |
) | |
r""" | |
Supports: https://github.com/ymcui/Chinese-LLaMA-Alpaca-2 | |
https://huggingface.co/ziqingyang/chinese-alpaca-2-7b | |
""" | |
register_template( | |
name="llama2_zh", | |
prefix=[ | |
"<<SYS>>\n{{system}}\n<</SYS>>\n\n" | |
], | |
prompt=[ | |
"[INST] {{query}} [/INST] " | |
], | |
system="You are a helpful assistant. 你是一个乐于助人的助手。", | |
sep=[] | |
) | |
r""" | |
Supports: https://huggingface.co/tatsu-lab/alpaca-7b-wdiff | |
https://github.com/ymcui/Chinese-LLaMA-Alpaca | |
""" | |
register_template( | |
name="alpaca", | |
prefix=[ | |
"{{system}}" | |
], | |
prompt=[ | |
"### Instruction:\n{{query}}\n\n### Response:\n" | |
], | |
system=( | |
"Below is an instruction that describes a task. " | |
"Write a response that appropriately completes the request." | |
), | |
sep=[ | |
"\n\n" | |
] | |
) | |
r""" | |
Supports: https://huggingface.co/lmsys/vicuna-7b-delta-v1.1 | |
https://huggingface.co/lmsys/vicuna-13b-delta-v1.1 | |
""" | |
register_template( | |
name="vicuna", | |
prefix=[ | |
"{{system}}" | |
], | |
prompt=[ | |
"USER: {{query}} ASSISTANT: " | |
], | |
system=( | |
"A chat between a curious user and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the user's questions." | |
), | |
sep=[] | |
) | |
r""" | |
Supports: https://huggingface.co/BelleGroup/BELLE-LLaMA-EXT-13B | |
""" | |
register_template( | |
name="belle", | |
prefix=[ | |
"{{system}}" | |
], | |
prompt=[ | |
"Human: {{query}}\n\nBelle: " | |
], | |
system="", | |
sep=[ | |
"\n\n" | |
] | |
) | |
r""" | |
Supports: https://github.com/CVI-SZU/Linly | |
""" | |
register_template( | |
name="linly", | |
prefix=[ | |
"{{system}}" | |
], | |
prompt=[ | |
"User: {{query}}\nBot: " | |
], | |
system="", | |
sep=[ | |
"\n" | |
] | |
) | |
r""" | |
Supports: https://github.com/Neutralzz/BiLLa | |
""" | |
register_template( | |
name="billa", | |
prefix=[ | |
"{{system}}" | |
], | |
prompt=[ | |
"Human: {{query}}\nAssistant: " | |
], | |
system="", | |
sep=[ | |
"\n" | |
] | |
) | |
r""" | |
Supports: https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1 | |
""" | |
register_template( | |
name="ziya", | |
prefix=[ | |
"{{system}}" | |
], | |
prompt=[ | |
{"token": "<human>"}, | |
":{{query}}\n", | |
{"token": "<bot>"}, | |
":" | |
], | |
system="", | |
sep=[ | |
"\n" | |
] | |
) | |
r""" | |
Supports: https://huggingface.co/qhduan/aquilachat-7b | |
""" | |
register_template( | |
name="aquila", | |
prefix=[ | |
"{{system}}" | |
], | |
prompt=[ | |
"Human: {{query}}###Assistant: " | |
], | |
system=( | |
"A chat between a curious human and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the human's questions." | |
), | |
sep=[ | |
"###" | |
] | |
) | |
r""" | |
Supports: https://huggingface.co/internlm/internlm-chat-7b | |
""" | |
register_template( | |
name="intern", | |
prefix=[ | |
"{{system}}" | |
], | |
prompt=[ | |
"<|User|>:{{query}}", | |
{"token": "<eoh>"}, | |
"\n<|Bot|>:" | |
], | |
system="", | |
sep=[ | |
{"token": "<eoa>"}, | |
"\n" | |
], | |
stop_words=[ | |
"<eoa>" | |
], | |
efficient_eos=True | |
) | |
r""" | |
Supports: https://huggingface.co/baichuan-inc/Baichuan-13B-Chat | |
""" | |
register_template( | |
name="baichuan", | |
prefix=[ | |
"{{system}}" | |
], | |
prompt=[ | |
{"token": "<reserved_102>"}, # user token | |
"{{query}}", | |
{"token": "<reserved_103>"} # assistant token | |
], | |
system="", | |
sep=[], | |
efficient_eos=True | |
) | |
r""" | |
Supports: https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat | |
https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat | |
""" | |
register_template( | |
name="baichuan2", | |
prefix=[ | |
"{{system}}" | |
], | |
prompt=[ | |
{"token": "<reserved_106>"}, # user token | |
"{{query}}", | |
{"token": "<reserved_107>"} # assistant token | |
], | |
system="", | |
sep=[], | |
efficient_eos=True | |
) | |
r""" | |
Supports: https://huggingface.co/HuggingFaceH4/starchat-alpha | |
https://huggingface.co/HuggingFaceH4/starchat-beta | |
""" | |
register_template( | |
name="starchat", | |
prefix=[ | |
{"token": "<|system|>"}, | |
"\n{{system}}", | |
], | |
prompt=[ | |
{"token": "<|user|>"}, | |
"\n{{query}}", | |
{"token": "<|end|>"}, | |
"\n", | |
{"token": "<|assistant|>"} | |
], | |
system="", | |
sep=[ | |
{"token": "<|end|>"}, | |
"\n" | |
], | |
stop_words=[ | |
"<|end|>" | |
], | |
efficient_eos=True | |
) | |
r""" | |
Supports: https://huggingface.co/Qwen/Qwen-7B-Chat | |
""" | |
register_template( | |
name="chatml", | |
prefix=[ | |
{"token": "<|im_start|>"}, | |
"system\n{{system}}" | |
], | |
prompt=[ | |
{"token": "<|im_start|>"}, | |
"user\n{{query}}", | |
{"token": "<|im_end|>"}, | |
"\n", | |
{"token": "<|im_start|>"}, | |
"assistant\n" | |
], | |
system="You are a helpful assistant.", | |
sep=[ | |
{"token": "<|im_end|>"}, | |
"\n" | |
], | |
stop_words=[ | |
"<|im_end|>" | |
], | |
efficient_eos=True | |
) | |
r""" | |
Supports: https://huggingface.co/THUDM/chatglm2-6b | |
""" | |
register_template( | |
name="chatglm2", | |
prefix=[ | |
{"token": "[gMASK]"}, | |
{"token": "sop"}, | |
"{{system}}" | |
], | |
prompt=[ | |
"[Round {{idx}}]\n\n问:{{query}}\n\n答:" | |
], | |
system="", | |
sep=[ | |
"\n\n" | |
], | |
efficient_eos=True | |
) | |
r""" | |
Supports: https://huggingface.co/xverse/XVERSE-13B-Chat | |
""" | |
register_template( | |
name="xverse", | |
prefix=[ | |
"{{system}}" | |
], | |
prompt=[ | |
"Human: {{query}}\n\nAssistant: " | |
], | |
system="", | |
sep=[] | |
) | |