Spaces:
Runtime error
Runtime error
import torch | |
from typing import Literal, Optional | |
from dataclasses import dataclass, field | |
class ModelArguments: | |
r""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co."} | |
) | |
use_fast_tokenizer: Optional[bool] = field( | |
default=True, | |
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} | |
) | |
use_auth_token: Optional[bool] = field( | |
default=False, | |
metadata={"help": "Will use the token generated when running `huggingface-cli login`."} | |
) | |
model_revision: Optional[str] = field( | |
default="main", | |
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} | |
) | |
quantization_bit: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of bits to quantize the model."} | |
) | |
quantization_type: Optional[Literal["fp4", "nf4"]] = field( | |
default="nf4", | |
metadata={"help": "Quantization data type to use in int4 training."} | |
) | |
double_quantization: Optional[bool] = field( | |
default=True, | |
metadata={"help": "Whether to use double quantization in int4 training or not."} | |
) | |
rope_scaling: Optional[Literal["linear", "dynamic"]] = field( | |
default=None, | |
metadata={"help": "Adopt scaled rotary positional embeddings."} | |
) | |
flash_attn: Optional[bool] = field( | |
default=False, | |
metadata={"help": "Enable flash attention for faster training."} | |
) | |
checkpoint_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Path to the directory(s) containing the delta model checkpoints as well as the configurations."} | |
) | |
reward_model: Optional[str] = field( | |
default=None, | |
metadata={"help": "Path to the directory containing the checkpoints of the reward model."} | |
) | |
plot_loss: Optional[bool] = field( | |
default=False, | |
metadata={"help": "Whether to plot the training loss after fine-tuning or not."} | |
) | |
hf_auth_token: Optional[str] = field( | |
default=None, | |
metadata={"help": "Auth token to log in with Hugging Face Hub."} | |
) | |
def __post_init__(self): | |
self.compute_dtype = None | |
self.model_max_length = None | |
if self.checkpoint_dir is not None: # support merging multiple lora weights | |
self.checkpoint_dir = [cd.strip() for cd in self.checkpoint_dir.split(",")] | |
if self.quantization_bit is not None: | |
assert self.quantization_bit in [4, 8], "We only accept 4-bit or 8-bit quantization." | |
if self.use_auth_token == True and self.hf_auth_token is not None: | |
from huggingface_hub.hf_api import HfFolder # lazy load | |
HfFolder.save_token(self.hf_auth_token) | |