Spaces:
Runtime error
Runtime error
import os | |
import json | |
import gradio as gr | |
import matplotlib.figure | |
import matplotlib.pyplot as plt | |
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Tuple | |
from datetime import datetime | |
from llmtuner.extras.ploting import smooth | |
from llmtuner.tuner import export_model | |
from llmtuner.webui.common import get_model_path, get_save_dir, DATA_CONFIG | |
from llmtuner.webui.locales import ALERTS | |
if TYPE_CHECKING: | |
from llmtuner.extras.callbacks import LogCallback | |
def update_process_bar(callback: "LogCallback") -> Dict[str, Any]: | |
if not callback.max_steps: | |
return gr.update(visible=False) | |
percentage = round(100 * callback.cur_steps / callback.max_steps, 0) if callback.max_steps != 0 else 100.0 | |
label = "Running {:d}/{:d}: {} < {}".format( | |
callback.cur_steps, | |
callback.max_steps, | |
callback.elapsed_time, | |
callback.remaining_time | |
) | |
return gr.update(label=label, value=percentage, visible=True) | |
def get_time() -> str: | |
return datetime.now().strftime('%Y-%m-%d-%H-%M-%S') | |
def can_preview(dataset_dir: str, dataset: list) -> Dict[str, Any]: | |
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f: | |
dataset_info = json.load(f) | |
if ( | |
len(dataset) > 0 | |
and "file_name" in dataset_info[dataset[0]] | |
and os.path.isfile(os.path.join(dataset_dir, dataset_info[dataset[0]]["file_name"])) | |
): | |
return gr.update(interactive=True) | |
else: | |
return gr.update(interactive=False) | |
def get_preview( | |
dataset_dir: str, dataset: list, start: Optional[int] = 0, end: Optional[int] = 2 | |
) -> Tuple[int, list, Dict[str, Any]]: | |
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f: | |
dataset_info = json.load(f) | |
data_file: str = dataset_info[dataset[0]]["file_name"] | |
with open(os.path.join(dataset_dir, data_file), "r", encoding="utf-8") as f: | |
if data_file.endswith(".json"): | |
data = json.load(f) | |
elif data_file.endswith(".jsonl"): | |
data = [json.loads(line) for line in f] | |
else: | |
data = [line for line in f] | |
return len(data), data[start:end], gr.update(visible=True) | |
def can_quantize(finetuning_type: str) -> Dict[str, Any]: | |
if finetuning_type != "lora": | |
return gr.update(value="None", interactive=False) | |
else: | |
return gr.update(interactive=True) | |
def gen_cmd(args: Dict[str, Any]) -> str: | |
if args.get("do_train", None): | |
args["plot_loss"] = True | |
cmd_lines = ["CUDA_VISIBLE_DEVICES=0 python src/train_bash.py "] | |
for k, v in args.items(): | |
if v is not None and v != "": | |
cmd_lines.append(" --{} {} ".format(k, str(v))) | |
cmd_text = "\\\n".join(cmd_lines) | |
cmd_text = "```bash\n{}\n```".format(cmd_text) | |
return cmd_text | |
def get_eval_results(path: os.PathLike) -> str: | |
with open(path, "r", encoding="utf-8") as f: | |
result = json.dumps(json.load(f), indent=4) | |
return "```json\n{}\n```\n".format(result) | |
def gen_plot(base_model: str, finetuning_type: str, output_dir: str) -> matplotlib.figure.Figure: | |
log_file = get_save_dir(base_model, finetuning_type, output_dir, "trainer_log.jsonl") | |
if not os.path.isfile(log_file): | |
return None | |
plt.close("all") | |
fig = plt.figure() | |
ax = fig.add_subplot(111) | |
steps, losses = [], [] | |
with open(log_file, "r", encoding="utf-8") as f: | |
for line in f: | |
log_info = json.loads(line) | |
if log_info.get("loss", None): | |
steps.append(log_info["current_steps"]) | |
losses.append(log_info["loss"]) | |
if len(losses) == 0: | |
return None | |
ax.plot(steps, losses, alpha=0.4, label="original") | |
ax.plot(steps, smooth(losses), label="smoothed") | |
ax.legend() | |
ax.set_xlabel("step") | |
ax.set_ylabel("loss") | |
return fig | |
def save_model( | |
lang: str, | |
model_name: str, | |
checkpoints: List[str], | |
finetuning_type: str, | |
template: str, | |
max_shard_size: int, | |
save_dir: str | |
) -> Generator[str, None, None]: | |
if not model_name: | |
yield ALERTS["err_no_model"][lang] | |
return | |
model_name_or_path = get_model_path(model_name) | |
if not model_name_or_path: | |
yield ALERTS["err_no_path"][lang] | |
return | |
if not checkpoints: | |
yield ALERTS["err_no_checkpoint"][lang] | |
return | |
checkpoint_dir = ",".join( | |
[get_save_dir(model_name, finetuning_type, ckpt) for ckpt in checkpoints] | |
) | |
if not save_dir: | |
yield ALERTS["err_no_save_dir"][lang] | |
return | |
args = dict( | |
model_name_or_path=model_name_or_path, | |
checkpoint_dir=checkpoint_dir, | |
finetuning_type=finetuning_type, | |
template=template, | |
output_dir=save_dir | |
) | |
yield ALERTS["info_exporting"][lang] | |
export_model(args, max_shard_size="{}GB".format(max_shard_size)) | |
yield ALERTS["info_exported"][lang] | |