blackwingedkite's picture
Upload 96 files
b87a3ce
import os
import json
import gradio as gr
import matplotlib.figure
import matplotlib.pyplot as plt
from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Tuple
from datetime import datetime
from llmtuner.extras.ploting import smooth
from llmtuner.tuner import export_model
from llmtuner.webui.common import get_model_path, get_save_dir, DATA_CONFIG
from llmtuner.webui.locales import ALERTS
if TYPE_CHECKING:
from llmtuner.extras.callbacks import LogCallback
def update_process_bar(callback: "LogCallback") -> Dict[str, Any]:
if not callback.max_steps:
return gr.update(visible=False)
percentage = round(100 * callback.cur_steps / callback.max_steps, 0) if callback.max_steps != 0 else 100.0
label = "Running {:d}/{:d}: {} < {}".format(
callback.cur_steps,
callback.max_steps,
callback.elapsed_time,
callback.remaining_time
)
return gr.update(label=label, value=percentage, visible=True)
def get_time() -> str:
return datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
def can_preview(dataset_dir: str, dataset: list) -> Dict[str, Any]:
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
dataset_info = json.load(f)
if (
len(dataset) > 0
and "file_name" in dataset_info[dataset[0]]
and os.path.isfile(os.path.join(dataset_dir, dataset_info[dataset[0]]["file_name"]))
):
return gr.update(interactive=True)
else:
return gr.update(interactive=False)
def get_preview(
dataset_dir: str, dataset: list, start: Optional[int] = 0, end: Optional[int] = 2
) -> Tuple[int, list, Dict[str, Any]]:
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
dataset_info = json.load(f)
data_file: str = dataset_info[dataset[0]]["file_name"]
with open(os.path.join(dataset_dir, data_file), "r", encoding="utf-8") as f:
if data_file.endswith(".json"):
data = json.load(f)
elif data_file.endswith(".jsonl"):
data = [json.loads(line) for line in f]
else:
data = [line for line in f]
return len(data), data[start:end], gr.update(visible=True)
def can_quantize(finetuning_type: str) -> Dict[str, Any]:
if finetuning_type != "lora":
return gr.update(value="None", interactive=False)
else:
return gr.update(interactive=True)
def gen_cmd(args: Dict[str, Any]) -> str:
if args.get("do_train", None):
args["plot_loss"] = True
cmd_lines = ["CUDA_VISIBLE_DEVICES=0 python src/train_bash.py "]
for k, v in args.items():
if v is not None and v != "":
cmd_lines.append(" --{} {} ".format(k, str(v)))
cmd_text = "\\\n".join(cmd_lines)
cmd_text = "```bash\n{}\n```".format(cmd_text)
return cmd_text
def get_eval_results(path: os.PathLike) -> str:
with open(path, "r", encoding="utf-8") as f:
result = json.dumps(json.load(f), indent=4)
return "```json\n{}\n```\n".format(result)
def gen_plot(base_model: str, finetuning_type: str, output_dir: str) -> matplotlib.figure.Figure:
log_file = get_save_dir(base_model, finetuning_type, output_dir, "trainer_log.jsonl")
if not os.path.isfile(log_file):
return None
plt.close("all")
fig = plt.figure()
ax = fig.add_subplot(111)
steps, losses = [], []
with open(log_file, "r", encoding="utf-8") as f:
for line in f:
log_info = json.loads(line)
if log_info.get("loss", None):
steps.append(log_info["current_steps"])
losses.append(log_info["loss"])
if len(losses) == 0:
return None
ax.plot(steps, losses, alpha=0.4, label="original")
ax.plot(steps, smooth(losses), label="smoothed")
ax.legend()
ax.set_xlabel("step")
ax.set_ylabel("loss")
return fig
def save_model(
lang: str,
model_name: str,
checkpoints: List[str],
finetuning_type: str,
template: str,
max_shard_size: int,
save_dir: str
) -> Generator[str, None, None]:
if not model_name:
yield ALERTS["err_no_model"][lang]
return
model_name_or_path = get_model_path(model_name)
if not model_name_or_path:
yield ALERTS["err_no_path"][lang]
return
if not checkpoints:
yield ALERTS["err_no_checkpoint"][lang]
return
checkpoint_dir = ",".join(
[get_save_dir(model_name, finetuning_type, ckpt) for ckpt in checkpoints]
)
if not save_dir:
yield ALERTS["err_no_save_dir"][lang]
return
args = dict(
model_name_or_path=model_name_or_path,
checkpoint_dir=checkpoint_dir,
finetuning_type=finetuning_type,
template=template,
output_dir=save_dir
)
yield ALERTS["info_exporting"][lang]
export_model(args, max_shard_size="{}GB".format(max_shard_size))
yield ALERTS["info_exported"][lang]