# coding=utf-8 # Modified from: # [1] https://huggingface.co/Birchlabs/flash_llama/blob/main/modeling_flash_llama.py # [2] https://github.com/lm-sys/FastChat/blob/main/fastchat/train/llama2_flash_attn_monkey_patch.py # [3] https://huggingface.co/togethercomputer/LLaMA-2-7B-32K/blob/main/modeling_flash_llama.py # [4] https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py # With fix from Alex Birch: https://huggingface.co/togethercomputer/LLaMA-2-7B-32K/discussions/17 import torch from typing import TYPE_CHECKING, Optional, Tuple from transformers.utils import logging if TYPE_CHECKING: from transformers.models.llama.configuration_llama import LlamaConfig try: from flash_attn.flash_attn_interface import ( flash_attn_kvpacked_func, flash_attn_varlen_kvpacked_func ) from flash_attn.bert_padding import pad_input, unpad_input print(">>>> FlashAttention installed") except ImportError: raise ImportError("Please install FlashAttention from https://github.com/Dao-AILab/flash-attention") try: from flash_attn.layers.rotary import apply_rotary_emb_func print(">>>> Flash RoPE installed") except ImportError: raise ImportError("Please install RoPE kernels from https://github.com/Dao-AILab/flash-attention") logger = logging.get_logger(__name__) class LlamaRMSNorm(torch.nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = torch.nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return (self.weight * hidden_states).to(input_dtype) # for fp32 weight class FlashRotaryEmbedding(torch.nn.Module): def __init__( self, dim: int, base=10000.0, interleaved=False, scale_base=None, scaling_factor=1.0, pos_idx_in_fp32=True, device=None ): super().__init__() self.dim = dim self.base = float(base) self.pos_idx_in_fp32 = pos_idx_in_fp32 # Generate and save the inverse frequency buffer (non trainable) inv_freq = self._compute_inv_freq(device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.interleaved = interleaved self.scale_base = scale_base self.scaling_factor = scaling_factor scale = ( (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim) if scale_base is not None else None ) self.register_buffer("scale", scale) self._seq_len_cached = 0 self._cos_cached = None self._sin_cached = None self._cos_k_cached = None self._sin_k_cached = None def _compute_inv_freq(self, device=None): return 1 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)) def _update_cos_sin_cache(self, seqlen, device=None, dtype=None): if ( seqlen > self._seq_len_cached or self._cos_cached.device != device or self._cos_cached.dtype != dtype or (self.training and self._cos_cached.is_inference()) ): self._seq_len_cached = seqlen if self.pos_idx_in_fp32: t = torch.arange(seqlen, device=device, dtype=torch.float32) t /= self.scaling_factor if self.inv_freq.dtype != torch.float32: inv_freq = self.inv_freq.to(torch.float32) else: inv_freq = self.inv_freq else: t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) t /= self.scaling_factor inv_freq = self.inv_freq freqs = torch.outer(t, inv_freq) if self.scale is None: self._cos_cached = torch.cos(freqs).to(dtype) self._sin_cached = torch.sin(freqs).to(dtype) else: power = ( (torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2) / self.scale_base ) scale = self.scale.to(device=power.device) ** power.unsqueeze(-1) # We want the multiplication by scale to happen in fp32 self._cos_cached = (torch.cos(freqs) * scale).to(dtype) self._sin_cached = (torch.sin(freqs) * scale).to(dtype) self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype) self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype) def forward(self, q: torch.Tensor, k: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]: r""" q: (batch, seqlen, nheads, headdim) k: (batch, seqlen, nheads, headdim) seqlen_offset: can be used in generation where the qkv being passed in is only the last token in the batch. """ self._update_cos_sin_cache(q.shape[1] + seqlen_offset, device=q.device, dtype=q.dtype) if self.scale is None: return apply_rotary_emb_func( q, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:], self.interleaved, True # inplace=True ), apply_rotary_emb_func( k, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:], self.interleaved, True # inplace=True ) else: assert False def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: r""" This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, slen, _, num_key_value_heads, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, :, :, None, :].expand(batch, slen, 2, num_key_value_heads, n_rep, head_dim) return hidden_states.reshape(batch, slen, 2, num_key_value_heads * n_rep, head_dim) class LlamaAttention(torch.nn.Module): def __init__(self, config: "LlamaConfig"): super().__init__() self.config = config self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = torch.nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = torch.nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = torch.nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = torch.nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self.register_buffer( "norm_factor", torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()), persistent=False, ) if self.config.rope_scaling is None: scaling_factor = 1 else: scaling_type = self.config.rope_scaling["type"] scaling_factor = self.config.rope_scaling["factor"] assert scaling_type == "linear" self.rotary_emb = FlashRotaryEmbedding( self.head_dim, base=10000, interleaved=False, scaling_factor=scaling_factor ) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, h_size = hidden_states.size() has_layer_past = past_key_value is not None if has_layer_past: past_kv = past_key_value[0] past_len = past_key_value[1] else: past_len = 0 q = self.q_proj(hidden_states) k = self.k_proj(hidden_states) v = self.v_proj(hidden_states) q = q.view(bsz, q_len, self.num_heads, self.head_dim) k = k.view(bsz, q_len, self.num_key_value_heads, self.head_dim) v = v.view(bsz, q_len, self.num_key_value_heads, self.head_dim) q, k = self.rotary_emb(q, k, past_len) kv = torch.stack([k, v], 2) kv = repeat_kv(kv, self.num_key_value_groups) # Cache QKV values if has_layer_past: new_len = past_len+q.size(1) if new_len > past_kv.size(1): past_kv = torch.cat( [past_kv, torch.empty(bsz, 256, 2, kv.size(3), kv.size(4), dtype=kv.dtype, device=kv.device)], dim=1 ) past_kv[:, past_len:new_len] = kv kv = past_kv[:, :new_len] else: past_kv = kv past_key_value = (past_kv, past_len + q.size(1)) if use_cache else None if attention_mask is not None: # varlen, ignore padding tokens, efficient for large batch with many paddings logger.warning_once("padded sequences is less efficient") unpadded_kv, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(kv, attention_mask) unpadded_q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, attention_mask[:, -q.size(1):]) attn_outputs = flash_attn_varlen_kvpacked_func( unpadded_q, unpadded_kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p=0.0, softmax_scale=1.0 / self.norm_factor, causal=(not has_layer_past), return_attn_probs=output_attentions ) attn_output = attn_outputs[0] if output_attentions else attn_outputs attn_output = pad_input(attn_output, indices_q, bsz, q_len).reshape(bsz, q_len, h_size) attn_weights = attn_outputs[2] if output_attentions else None else: # no padding tokens, more efficient attn_outputs = flash_attn_kvpacked_func( q, kv, dropout_p=0.0, softmax_scale=1.0 / self.norm_factor, causal=(not has_layer_past), return_attn_probs=output_attentions ) attn_output = attn_outputs[0] if output_attentions else attn_outputs attn_output = attn_output.reshape(bsz, q_len, h_size) attn_weights = attn_outputs[2] if output_attentions else None attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # Disable the transformation of the attention mask in LlamaModel as flash attention # takes a boolean key_padding_mask. Fills in the past kv length for use in forward. def _prepare_decoder_attention_mask( self, attention_mask, input_shape, inputs_embeds, past_key_values_length ): # [bsz, seq_len] if past_key_values_length > 0 and attention_mask is not None: attention_mask = torch.cat( ( torch.full( (input_shape[0], past_key_values_length), True, dtype=attention_mask.dtype, device=attention_mask.device ), attention_mask ), dim=-1 ) if attention_mask is not None and torch.all(attention_mask): return None # This uses the faster call when training with full samples return attention_mask