import os import math import torch from types import MethodType from typing import TYPE_CHECKING, Literal, Optional, Tuple from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, PretrainedConfig, PreTrainedModel, PreTrainedTokenizerBase ) from transformers.utils import check_min_version from transformers.utils.versions import require_version from trl import AutoModelForCausalLMWithValueHead try: from transformers.integrations import is_deepspeed_zero3_enabled except ImportError: from transformers.deepspeed import is_deepspeed_zero3_enabled from llmtuner.extras.logging import reset_logging, get_logger from llmtuner.extras.misc import count_parameters from llmtuner.extras.save_and_load import load_valuehead_params from llmtuner.hparams import FinetuningArguments from llmtuner.tuner.core.adapter import init_adapter from llmtuner.tuner.core.utils import prepare_model_for_training if TYPE_CHECKING: from transformers import PreTrainedTokenizer from llmtuner.hparams import ModelArguments logger = get_logger(__name__) check_min_version("4.30.0") require_version("datasets>=2.12.0", "To fix: pip install datasets>=2.12.0") require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0") require_version("peft>=0.4.0", "To fix: pip install peft>=0.4.0") require_version("trl>=0.7.1", "To fix: pip install trl>=0.7.1") def load_model_and_tokenizer( model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: Optional[bool] = False, stage: Optional[Literal["pt", "sft", "rm", "ppo"]] = "sft" ) -> Tuple[PreTrainedModel, "PreTrainedTokenizer"]: r""" Loads pretrained model and tokenizer. Support both training and inference. """ if (not is_trainable) and model_args.checkpoint_dir is None: logger.warning("Checkpoint is not found at evaluation, load the original model.") finetuning_args = FinetuningArguments(finetuning_type="none") config_kwargs = { "trust_remote_code": True, "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, use_fast=model_args.use_fast_tokenizer, padding_side="right", # training with left-padded tensors in fp16 precision may cause overflow **config_kwargs ) # Fix tokenizer (for ChatGLM2) if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__): tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer) if finetuning_args.finetuning_type != "lora" and model_args.checkpoint_dir is not None: model_to_load = model_args.checkpoint_dir[0] else: model_to_load = model_args.model_name_or_path config = AutoConfig.from_pretrained(model_to_load, **config_kwargs) # Fix config (for Qwen) if hasattr(config, "fp16") and hasattr(config, "bf16"): setattr(config, "fp16", model_args.compute_dtype == torch.float16) setattr(config, "bf16", model_args.compute_dtype == torch.bfloat16) # Set RoPE scaling if model_args.rope_scaling is not None: if hasattr(config, "use_dynamic_ntk"): # for Qwen models if is_trainable: logger.warning("Qwen model does not support RoPE scaling in training.") else: setattr(config, "use_dynamic_ntk", True) setattr(config, "use_logn_attn", True) logger.info("Using dynamic NTK scaling.") elif hasattr(config, "rope_scaling"): # for LLaMA and Falcon models require_version("transformers>=4.31.0", "RoPE scaling requires transformers>=4.31.0") if is_trainable: if model_args.rope_scaling == "dynamic": assert not model_args.flash_attn, "Flash attention does not support dynamic rope scaling." logger.warning( "Dynamic NTK may not work well with fine-tuning. " "See: https://github.com/huggingface/transformers/pull/24653" ) current_max_length = getattr(config, "max_position_embeddings", None) if current_max_length and model_args.model_max_length > current_max_length: scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length)) else: logger.warning("Input length is smaller than max length. Consider increase input length.") scaling_factor = 1.0 else: scaling_factor = 2.0 setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor}) logger.info("Using {} scaling strategy and setting scaling factor to {}".format( model_args.rope_scaling, scaling_factor )) else: logger.warning("Current model does not support RoPE scaling.") # Set flash attention if model_args.flash_attn and getattr(config, "model_type", None) == "llama": import transformers.models.llama.modeling_llama as LlamaModule import llmtuner.extras.patches.flash_llama as FlashLlama LlamaModule.LlamaRMSNorm = FlashLlama.LlamaRMSNorm LlamaModule.LlamaAttention = FlashLlama.LlamaAttention LlamaModule.LlamaModel._prepare_decoder_attention_mask = FlashLlama._prepare_decoder_attention_mask if not hasattr(config, "num_key_value_heads"): # for LLaMA-1 models setattr(config, "num_key_value_heads", getattr(config, "num_attention_heads")) if getattr(config, "pretraining_tp", 1) != 1: setattr(config, "pretraining_tp", 1) # Quantization configurations (using bitsandbytes library). is_mergeable = True if model_args.quantization_bit is not None: if is_deepspeed_zero3_enabled(): raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.") if model_args.quantization_bit == 8: require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0") config_kwargs["load_in_8bit"] = True config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True) elif model_args.quantization_bit == 4: require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0") config_kwargs["load_in_4bit"] = True config_kwargs["quantization_config"] = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=model_args.compute_dtype, bnb_4bit_use_double_quant=model_args.double_quantization, bnb_4bit_quant_type=model_args.quantization_type ) is_mergeable = False config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK", "0"))} if is_trainable else "auto" logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit)) # Load and prepare pre-trained models (without valuehead). model = AutoModelForCausalLM.from_pretrained( model_to_load, config=config, torch_dtype=model_args.compute_dtype, low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()), **config_kwargs ) # Disable custom generate method (for Qwen) if isinstance(model, PreTrainedModel) and "GenerationMixin" not in str(model.generate.__func__): model.generate = MethodType(PreTrainedModel.generate, model) # Fix LM head (for ChatGLM2) if not hasattr(model, "lm_head") and hasattr(model, "transformer"): setattr(model, "lm_head", model.transformer.output_layer) # Register auto class to save the custom code files. if isinstance(config, PretrainedConfig) and "AutoConfig" in getattr(config, "auto_map", {}): config.__class__.register_for_auto_class() if isinstance(model, PreTrainedModel) and "AutoModelForCausalLM" in getattr(config, "auto_map", {}): model.__class__.register_for_auto_class() if isinstance(tokenizer, PreTrainedTokenizerBase) and "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}): tokenizer.__class__.register_for_auto_class() # Initialize adapters model = prepare_model_for_training(model, finetuning_args.finetuning_type) if is_trainable else model model = init_adapter(model, model_args, finetuning_args, is_trainable, is_mergeable) model = model.train() if is_trainable else model.eval() # Prepare model with valuehead for RLHF if stage == "rm" or stage == "ppo": model = AutoModelForCausalLMWithValueHead.from_pretrained(model) model._keys_to_ignore_on_save = None reset_logging() if stage == "rm" and model_args.checkpoint_dir is not None: # load valuehead weights to evaluate reward model logger.warning("Only the last checkpoint containing valuehead will be loaded.") if load_valuehead_params(model, model_args.checkpoint_dir[-1]): model.v_head.load_state_dict({ "summary.weight": getattr(model, "reward_head_weight"), "summary.bias": getattr(model, "reward_head_bias") }) if stage == "ppo": # load reward model logger.info("Load reward model from {}".format(model_args.reward_model)) if getattr(model, "is_peft_model", False): model.pretrained_model.load_adapter(model_args.reward_model, "reward") assert load_valuehead_params(model, model_args.reward_model), "Reward model is not correctly loaded." # Prepare model for inference if not is_trainable: model.requires_grad_(False) # fix all model params model = model.to(model_args.compute_dtype) if model_args.quantization_bit is None else model trainable_params, all_param = count_parameters(model) logger.info("trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format( trainable_params, all_param, 100 * trainable_params / all_param )) return model, tokenizer