import torch from typing import TYPE_CHECKING, List, Optional from llmtuner.extras.constants import LAYERNORM_NAMES if TYPE_CHECKING: from transformers.modeling_utils import PreTrainedModel def find_all_linear_modules( model: "PreTrainedModel", quantization_bit: Optional[int] = None, output_layer_name: Optional[str] = "lm_head" ) -> List[str]: if quantization_bit is not None: import bitsandbytes as bnb linear_cls = bnb.nn.Linear4bit if quantization_bit == 4 else bnb.nn.Linear8bitLt else: linear_cls = torch.nn.Linear module_names = set() for name, module in model.named_modules(): if output_layer_name not in name and isinstance(module, linear_cls): module_names.add(name.split(".")[-1]) if output_layer_name in module_names: module_names.pop(output_layer_name) return list(module_names) def prepare_model_for_training( model: "PreTrainedModel", finetuning_type: str, output_layer_name: Optional[str] = "lm_head", use_gradient_checkpointing: Optional[bool] = True, layer_norm_names: Optional[List[str]] = LAYERNORM_NAMES ) -> "PreTrainedModel": r""" Includes: (1) cast the layernorm in fp32 (2) make output embedding layer require grads (3) upcast the lm_head to fp32 Inspired by: https://github.com/huggingface/peft/blob/v0.2.0/src/peft/utils/other.py#L33 """ for name, param in model.named_parameters(): if param.ndim == 1 and any(layer_norm_name in name for layer_norm_name in layer_norm_names): param.data = param.data.to(torch.float32) if use_gradient_checkpointing: if hasattr(model, "enable_input_require_grads"): model.enable_input_require_grads() else: def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) model.gradient_checkpointing_enable() model.config.use_cache = False # turn off when gradient checkpointing is enabled if finetuning_type != "full" and hasattr(model, output_layer_name): output_layer: torch.nn.Linear = getattr(model, output_layer_name) input_dtype = output_layer.weight.dtype class CastOutputToFloat(torch.nn.Sequential): def forward(self, x: torch.Tensor) -> torch.Tensor: return super().forward(x.to(input_dtype)).to(torch.float32) setattr(model, output_layer_name, CastOutputToFloat(output_layer)) return model