import torch from typing import TYPE_CHECKING, Dict, List, Literal, Optional, Tuple from llmtuner.extras.constants import LAYERNORM_NAMES if TYPE_CHECKING: from trl import AutoModelForCausalLMWithValueHead def replace_model(model: "AutoModelForCausalLMWithValueHead", target: Literal["default", "reward"]) -> None: if target == "reward": # save default head temporarily valuehead_state_dict = model.v_head.state_dict() setattr(model, "default_head_weight", valuehead_state_dict["summary.weight"].detach().clone()) setattr(model, "default_head_bias", valuehead_state_dict["summary.bias"].detach().clone()) model.pretrained_model.set_adapter(target) # set the LoRA adapter to be active model.v_head.load_state_dict({ "summary.weight": getattr(model, "{}_head_weight".format(target)), "summary.bias": getattr(model, "{}_head_bias".format(target)) }) def cast_layernorm_dtype( model: "AutoModelForCausalLMWithValueHead", compute_dtype: torch.dtype, layer_norm_params: Optional[Dict[str, torch.Tensor]] = None, layer_norm_names: Optional[List[str]] = LAYERNORM_NAMES ) -> Tuple["AutoModelForCausalLMWithValueHead", Dict[str, torch.Tensor]]: layer_norm_state_dict = {} for name, param in model.named_parameters(): if param.ndim == 1 and any(layer_norm_name in name for layer_norm_name in layer_norm_names): if layer_norm_params is None: layer_norm_state_dict[name] = param.data.detach().clone() # store float32 weights for stability param.data = param.data.to(compute_dtype) else: param.data = layer_norm_params[name] # restore float32 weights return model, layer_norm_state_dict