# Inspired by: # https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py from typing import TYPE_CHECKING, Optional, List from transformers import Seq2SeqTrainingArguments from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset from llmtuner.extras.callbacks import SavePeftModelCallback from llmtuner.extras.ploting import plot_loss from llmtuner.tuner.core import load_model_and_tokenizer from llmtuner.tuner.rm.metric import compute_accuracy from llmtuner.tuner.rm.collator import PairwiseDataCollatorWithPadding from llmtuner.tuner.rm.trainer import PairwiseTrainer if TYPE_CHECKING: from transformers import TrainerCallback from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments def run_rm( model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", callbacks: Optional[List["TrainerCallback"]] = None ): dataset = get_dataset(model_args, data_args) model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="rm") dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="rm") data_collator = PairwiseDataCollatorWithPadding(tokenizer) training_args_dict = training_args.to_dict() training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset training_args = Seq2SeqTrainingArguments(**training_args_dict) # Initialize our Trainer trainer = PairwiseTrainer( model=model, args=training_args, tokenizer=tokenizer, data_collator=data_collator, callbacks=callbacks + [SavePeftModelCallback()], compute_metrics=compute_accuracy, **split_dataset(dataset, data_args, training_args) ) # Training if training_args.do_train: train_result = trainer.train() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() trainer.save_model() if trainer.is_world_process_zero() and model_args.plot_loss: plot_loss(training_args.output_dir, keys=["loss", "eval_loss"]) # Evaluation if training_args.do_eval: metrics = trainer.evaluate(metric_key_prefix="eval") trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Predict if training_args.do_predict: predict_results = trainer.predict(dataset, metric_key_prefix="predict") trainer.log_metrics("predict", predict_results.metrics) trainer.save_metrics("predict", predict_results.metrics) trainer.save_predictions(predict_results)