from typing import TYPE_CHECKING, Dict import gradio as gr from llmtuner.webui.common import list_dataset, DEFAULT_DATA_DIR from llmtuner.webui.components.data import create_preview_box from llmtuner.webui.utils import can_preview, get_preview if TYPE_CHECKING: from gradio.components import Component from llmtuner.webui.runner import Runner def create_eval_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[str, "Component"]: with gr.Row(): dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2) dataset = gr.Dropdown(multiselect=True, scale=4) data_preview_btn = gr.Button(interactive=False, scale=1) preview_box, preview_count, preview_samples, close_btn = create_preview_box() dataset_dir.change(list_dataset, [dataset_dir], [dataset]) dataset.change(can_preview, [dataset_dir, dataset], [data_preview_btn]) data_preview_btn.click( get_preview, [dataset_dir, dataset], [preview_count, preview_samples, preview_box], queue=False ) with gr.Row(): cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1) max_samples = gr.Textbox(value="100000") batch_size = gr.Slider(value=8, minimum=1, maximum=512, step=1) predict = gr.Checkbox(value=True) with gr.Row(): max_new_tokens = gr.Slider(10, 2048, value=128, step=1) top_p = gr.Slider(0.01, 1, value=0.7, step=0.01) temperature = gr.Slider(0.01, 1.5, value=0.95, step=0.01) with gr.Row(): cmd_preview_btn = gr.Button() start_btn = gr.Button() stop_btn = gr.Button() with gr.Row(): process_bar = gr.Slider(visible=False, interactive=False) with gr.Box(): output_box = gr.Markdown() input_components = [ top_elems["lang"], top_elems["model_name"], top_elems["checkpoints"], top_elems["finetuning_type"], top_elems["quantization_bit"], top_elems["template"], top_elems["system_prompt"], dataset_dir, dataset, cutoff_len, max_samples, batch_size, predict, max_new_tokens, top_p, temperature ] output_components = [ output_box, process_bar ] cmd_preview_btn.click(runner.preview_eval, input_components, output_components) start_btn.click(runner.run_eval, input_components, output_components) stop_btn.click(runner.set_abort, queue=False) return dict( dataset_dir=dataset_dir, dataset=dataset, data_preview_btn=data_preview_btn, preview_count=preview_count, preview_samples=preview_samples, close_btn=close_btn, cutoff_len=cutoff_len, max_samples=max_samples, batch_size=batch_size, predict=predict, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature, cmd_preview_btn=cmd_preview_btn, start_btn=start_btn, stop_btn=stop_btn, output_box=output_box )