from typing import TYPE_CHECKING, Dict from transformers.trainer_utils import SchedulerType import gradio as gr from llmtuner.extras.constants import TRAINING_STAGES from llmtuner.webui.common import list_checkpoint, list_dataset, DEFAULT_DATA_DIR from llmtuner.webui.components.data import create_preview_box from llmtuner.webui.utils import can_preview, get_preview, gen_plot if TYPE_CHECKING: from gradio.components import Component from llmtuner.webui.runner import Runner def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[str, "Component"]: with gr.Row(): training_stage = gr.Dropdown( choices=list(TRAINING_STAGES.keys()), value=list(TRAINING_STAGES.keys())[0], scale=2 ) dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2) dataset = gr.Dropdown(multiselect=True, scale=4) data_preview_btn = gr.Button(interactive=False, scale=1) preview_box, preview_count, preview_samples, close_btn = create_preview_box() training_stage.change(list_dataset, [dataset_dir, training_stage], [dataset]) dataset_dir.change(list_dataset, [dataset_dir, training_stage], [dataset]) dataset.change(can_preview, [dataset_dir, dataset], [data_preview_btn]) data_preview_btn.click( get_preview, [dataset_dir, dataset], [preview_count, preview_samples, preview_box], queue=False ) with gr.Row(): cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1) learning_rate = gr.Textbox(value="5e-5") num_train_epochs = gr.Textbox(value="3.0") max_samples = gr.Textbox(value="100000") compute_type = gr.Radio(choices=["fp16", "bf16"], value="fp16") with gr.Row(): batch_size = gr.Slider(value=4, minimum=1, maximum=512, step=1) gradient_accumulation_steps = gr.Slider(value=4, minimum=1, maximum=512, step=1) lr_scheduler_type = gr.Dropdown( choices=[scheduler.value for scheduler in SchedulerType], value="cosine" ) max_grad_norm = gr.Textbox(value="1.0") val_size = gr.Slider(value=0, minimum=0, maximum=1, step=0.001) with gr.Accordion(label="Advanced config", open=False) as advanced_tab: with gr.Row(): logging_steps = gr.Slider(value=5, minimum=5, maximum=1000, step=5) save_steps = gr.Slider(value=100, minimum=10, maximum=5000, step=10) warmup_steps = gr.Slider(value=0, minimum=0, maximum=5000, step=1) flash_attn = gr.Checkbox(value=False) rope_scaling = gr.Checkbox(value=False) with gr.Accordion(label="LoRA config", open=False) as lora_tab: with gr.Row(): lora_rank = gr.Slider(value=8, minimum=1, maximum=1024, step=1, scale=1) lora_dropout = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1) lora_target = gr.Textbox(scale=2) resume_lora_training = gr.Checkbox(value=True, scale=1) with gr.Accordion(label="RLHF config", open=False) as rlhf_tab: with gr.Row(): dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=2) reward_model = gr.Dropdown(scale=2) refresh_btn = gr.Button(scale=1) refresh_btn.click( list_checkpoint, [top_elems["model_name"], top_elems["finetuning_type"]], [reward_model], queue=False ) with gr.Row(): cmd_preview_btn = gr.Button() start_btn = gr.Button() stop_btn = gr.Button() with gr.Row(): with gr.Column(scale=3): with gr.Row(): output_dir = gr.Textbox() with gr.Row(): process_bar = gr.Slider(visible=False, interactive=False) with gr.Box(): output_box = gr.Markdown() with gr.Column(scale=1): loss_viewer = gr.Plot() input_components = [ top_elems["lang"], top_elems["model_name"], top_elems["checkpoints"], top_elems["finetuning_type"], top_elems["quantization_bit"], top_elems["template"], top_elems["system_prompt"], training_stage, dataset_dir, dataset, cutoff_len, learning_rate, num_train_epochs, max_samples, compute_type, batch_size, gradient_accumulation_steps, lr_scheduler_type, max_grad_norm, val_size, logging_steps, save_steps, warmup_steps, flash_attn, rope_scaling, lora_rank, lora_dropout, lora_target, resume_lora_training, dpo_beta, reward_model, output_dir ] output_components = [ output_box, process_bar ] cmd_preview_btn.click(runner.preview_train, input_components, output_components) start_btn.click(runner.run_train, input_components, output_components) stop_btn.click(runner.set_abort, queue=False) process_bar.change( gen_plot, [top_elems["model_name"], top_elems["finetuning_type"], output_dir], loss_viewer, queue=False ) return dict( training_stage=training_stage, dataset_dir=dataset_dir, dataset=dataset, data_preview_btn=data_preview_btn, preview_count=preview_count, preview_samples=preview_samples, close_btn=close_btn, cutoff_len=cutoff_len, learning_rate=learning_rate, num_train_epochs=num_train_epochs, max_samples=max_samples, compute_type=compute_type, batch_size=batch_size, gradient_accumulation_steps=gradient_accumulation_steps, lr_scheduler_type=lr_scheduler_type, max_grad_norm=max_grad_norm, val_size=val_size, advanced_tab=advanced_tab, logging_steps=logging_steps, save_steps=save_steps, warmup_steps=warmup_steps, flash_attn=flash_attn, rope_scaling=rope_scaling, lora_tab=lora_tab, lora_rank=lora_rank, lora_dropout=lora_dropout, lora_target=lora_target, resume_lora_training=resume_lora_training, rlhf_tab=rlhf_tab, dpo_beta=dpo_beta, reward_model=reward_model, refresh_btn=refresh_btn, cmd_preview_btn=cmd_preview_btn, start_btn=start_btn, stop_btn=stop_btn, output_dir=output_dir, output_box=output_box, loss_viewer=loss_viewer )