import hashlib from typing import TYPE_CHECKING, Dict, List, Optional, Union from llmtuner.extras.logging import get_logger if TYPE_CHECKING: from datasets import Dataset, IterableDataset from transformers import TrainingArguments from llmtuner.hparams import DataArguments logger = get_logger(__name__) EXT2TYPE = { "csv": "csv", "json": "json", "jsonl": "json", "txt": "text" } def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None: if file_sha1 is None: logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.") return if len(data_files) != 1: logger.warning("Checksum failed: too many files.") return with open(data_files[0], "rb") as f: sha1 = hashlib.sha1(f.read()).hexdigest() if sha1 != file_sha1: logger.warning("Checksum failed: mismatched SHA-1 hash value at {}.".format(data_files[0])) def split_dataset( dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", training_args: "TrainingArguments" ) -> Dict[str, "Dataset"]: if training_args.do_train: if data_args.val_size > 1e-6: # Split the dataset if data_args.streaming: val_set = dataset.take(int(data_args.val_size)) train_set = dataset.skip(int(data_args.val_size)) dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed) return {"train_dataset": train_set, "eval_dataset": val_set} else: val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size dataset = dataset.train_test_split(test_size=val_size, seed=training_args.seed) return {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]} else: if data_args.streaming: dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed) return {"train_dataset": dataset} else: # do_eval or do_predict return {"eval_dataset": dataset}