File size: 3,345 Bytes
1d01e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import gradio as gr
import PIL
import spaces
import torch
from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel
from hi_diffusers.schedulers.flash_flow_match import (
    FlashFlowMatchEulerDiscreteScheduler,
)
from transformers import AutoTokenizer, LlamaForCausalLM

# Constants
MODEL_PREFIX: str = "HiDream-ai"
LLAMA_MODEL_NAME: str = "meta-llama/Meta-Llama-3.1-8B-Instruct"
MODEL_PATH = "HiDream-ai/HiDream-I1-Dev"
MODEL_CONFIGS = {
    "guidance_scale": 0.0,
    "num_inference_steps": 28,
    "shift": 6.0,
    "scheduler": FlashFlowMatchEulerDiscreteScheduler,
}


# Supported image sizes
RESOLUTION_OPTIONS: list[str] = [
    "1024 x 1024 (Square)",
    "768 x 1360 (Portrait)",
    "1360 x 768 (Landscape)",
    "880 x 1168 (Portrait)",
    "1168 x 880 (Landscape)",
    "1248 x 832 (Landscape)",
    "832 x 1248 (Portrait)",
]


tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL_NAME, use_fast=False)
text_encoder = LlamaForCausalLM.from_pretrained(
    LLAMA_MODEL_NAME,
    output_hidden_states=True,
    output_attentions=True,
    torch_dtype=torch.bfloat16,
).to("cuda")

transformer = HiDreamImageTransformer2DModel.from_pretrained(
    MODEL_PATH,
    subfolder="transformer",
    torch_dtype=torch.bfloat16,
).to("cuda")

scheduler = MODEL_CONFIGS["scheduler"](
    num_train_timesteps=1000,
    shift=MODEL_CONFIGS["shift"],
    use_dynamic_shifting=False,
)

pipe = HiDreamImagePipeline.from_pretrained(
    MODEL_PATH,
    scheduler=scheduler,
    tokenizer_4=tokenizer,
    text_encoder_4=text_encoder,
    torch_dtype=torch.bfloat16,
).to("cuda", torch.bfloat16)

pipe.transformer = transformer


@spaces.GPU(duration=90)
def generate_image(
    prompt: str,
    resolution: str,
    seed: int,
) -> tuple[PIL.Image.Image, int]:
    if seed == -1:
        seed = torch.randint(0, 1_000_000, (1,)).item()

    height, width = tuple(map(int, resolution.replace(" ", "").split("x")))
    generator = torch.Generator("cuda").manual_seed(seed)

    image = pipe(
        prompt=prompt,
        height=height,
        width=width,
        guidance_scale=MODEL_CONFIGS["guidance_scale"],
        num_inference_steps=MODEL_CONFIGS["num_inference_steps"],
        generator=generator,
    ).images[0]

    torch.cuda.empty_cache()
    return image, seed


# Gradio UI
with gr.Blocks(title="HiDream Image Generator") as demo:
    gr.Markdown("## 🌈 HiDream Image Generator")

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(
                label="Prompt",
                placeholder="e.g. A futuristic city with floating cars at sunset",
                lines=3,
            )

            resolution = gr.Radio(
                choices=RESOLUTION_OPTIONS,
                value=RESOLUTION_OPTIONS[0],
                label="Resolution",
            )

            seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
            generate_btn = gr.Button("Generate Image", variant="primary")
            seed_used = gr.Number(label="Seed Used", interactive=False)

        with gr.Column():
            output_image = gr.Image(label="Generated Image", type="pil")

    generate_btn.click(
        fn=generate_image,
        inputs=[prompt, resolution, seed],
        outputs=[output_image, seed_used],
    )

if __name__ == "__main__":
    demo.launch()