File size: 5,250 Bytes
755bbb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr
import spaces
import torch
from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel
from hi_diffusers.schedulers.flash_flow_match import (
    FlashFlowMatchEulerDiscreteScheduler,
)
from hi_diffusers.schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast

# Constants
MODEL_PREFIX: str = "HiDream-ai"
LLAMA_MODEL_NAME: str = "meta-llama/Meta-Llama-3.1-8B-Instruct"

# Model configurations
MODEL_CONFIGS: dict[str, dict] = {
    "dev": {
        "path": f"{MODEL_PREFIX}/HiDream-I1-Dev",
        "guidance_scale": 0.0,
        "num_inference_steps": 28,
        "shift": 6.0,
        "scheduler": FlashFlowMatchEulerDiscreteScheduler,
    },
    "full": {
        "path": f"{MODEL_PREFIX}/HiDream-I1-Full",
        "guidance_scale": 5.0,
        "num_inference_steps": 50,
        "shift": 3.0,
        "scheduler": FlowUniPCMultistepScheduler,
    },
    "fast": {
        "path": f"{MODEL_PREFIX}/HiDream-I1-Fast",
        "guidance_scale": 0.0,
        "num_inference_steps": 16,
        "shift": 3.0,
        "scheduler": FlashFlowMatchEulerDiscreteScheduler,
    },
}

# Supported image sizes
RESOLUTION_OPTIONS: list[str] = [
    "1024 Γ— 1024 (Square)",
    "768 Γ— 1360 (Portrait)",
    "1360 Γ— 768 (Landscape)",
    "880 Γ— 1168 (Portrait)",
    "1168 Γ— 880 (Landscape)",
    "1248 Γ— 832 (Landscape)",
    "832 Γ— 1248 (Portrait)",
]

# Model cache
loaded_models: dict[str, HiDreamImagePipeline] = {}


def parse_resolution(res_str: str) -> tuple[int, int]:
    """Parse resolution string like '1024 Γ— 1024' into (1024, 1024)"""
    return tuple(map(int, res_str.replace("Γ—", "x").replace(" ", "").split("x")))


def load_models(model_type: str) -> HiDreamImagePipeline:
    """Load and initialize the HiDream model pipeline for a given model type."""
    config = MODEL_CONFIGS[model_type]
    pretrained_model = config["path"]

    tokenizer = PreTrainedTokenizerFast.from_pretrained(
        LLAMA_MODEL_NAME, use_fast=False
    )
    text_encoder = LlamaForCausalLM.from_pretrained(
        LLAMA_MODEL_NAME,
        output_hidden_states=True,
        output_attentions=True,
        torch_dtype=torch.bfloat16,
    ).to("cuda")

    transformer = HiDreamImageTransformer2DModel.from_pretrained(
        pretrained_model,
        subfolder="transformer",
        torch_dtype=torch.bfloat16,
    ).to("cuda")

    scheduler = config["scheduler"](
        num_train_timesteps=1000,
        shift=config["shift"],
        use_dynamic_shifting=False,
    )

    pipe = HiDreamImagePipeline.from_pretrained(
        pretrained_model,
        scheduler=scheduler,
        tokenizer_4=tokenizer,
        text_encoder_4=text_encoder,
        torch_dtype=torch.bfloat16,
    ).to("cuda", torch.bfloat16)

    pipe.transformer = transformer
    return pipe


# Preload default model
print("πŸ”§ Preloading default model (full)...")
loaded_models["full"] = load_models("full")
print("βœ… Model loaded.")


@spaces.GPU(duration=90)
def generate_image(
    model_type: str,
    prompt: str,
    resolution: str,
    seed: int,
) -> tuple[object, int]:
    """Generate image using HiDream pipeline."""
    if model_type not in loaded_models:
        print(f"πŸ“¦ Lazy-loading model {model_type}...")
        loaded_models[model_type] = load_models(model_type)

    pipe: HiDreamImagePipeline = loaded_models[model_type]
    config = MODEL_CONFIGS[model_type]

    if seed == -1:
        seed = torch.randint(0, 1_000_000, (1,)).item()

    height, width = parse_resolution(resolution)
    generator = torch.Generator("cuda").manual_seed(seed)

    image = pipe(
        prompt=prompt,
        height=height,
        width=width,
        guidance_scale=config["guidance_scale"],
        num_inference_steps=config["num_inference_steps"],
        generator=generator,
    ).images[0]

    torch.cuda.empty_cache()
    return image, seed


# Gradio UI
with gr.Blocks(title="HiDream Image Generator") as demo:
    gr.Markdown("## 🌈 HiDream Image Generator")

    with gr.Row():
        with gr.Column():
            model_type = gr.Radio(
                choices=list(MODEL_CONFIGS.keys()),
                value="full",
                label="Model Type",
                info="Choose between full, fast or dev variants",
            )

            prompt = gr.Textbox(
                label="Prompt",
                placeholder="e.g. A futuristic city with floating cars at sunset",
                lines=3,
            )

            resolution = gr.Radio(
                choices=RESOLUTION_OPTIONS,
                value=RESOLUTION_OPTIONS[0],
                label="Resolution",
            )

            seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
            generate_btn = gr.Button("Generate Image", variant="primary")
            seed_used = gr.Number(label="Seed Used", interactive=False)

        with gr.Column():
            output_image = gr.Image(label="Generated Image", type="pil")

    generate_btn.click(
        fn=generate_image,
        inputs=[model_type, prompt, resolution, seed],
        outputs=[output_image, seed_used],
    )

if __name__ == "__main__":
    demo.launch()